IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v42y2022i5p868-887.html
   My bibliography  Save this article

Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets

Author

Listed:
  • Geert Dhaene
  • Piet Sercu
  • Jianbin Wu

Abstract

We propose sparse DCC‐GARCH and BEKK‐GARCH models based on L1 ${L}_{1}$ regularization. We use the models to study daily return volatility and correlation spillovers for the 24 constituents of the Bloomberg commodity index in the period 2000–2018. The sparse models outperform the diagonal models out‐of‐sample in terms of model fit and other criteria. We also test whether the higher visibility of metals and energy markets compared with agricultural commodities affects the speed of information processing. We find correlation spillovers from metals and energy to agricultural commodities even though the latter tend to settle somewhat later.

Suggested Citation

  • Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
  • Handle: RePEc:wly:jfutmk:v:42:y:2022:i:5:p:868-887
    DOI: 10.1002/fut.22312
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22312
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/11708 is not listed on IDEAS
    2. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2013. "Semiparametric Vector Mem," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1067-1086, November.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    5. Jian Yang & David A. Bessler & David J. Leatham, 2001. "Asset storability and price discovery in commodity futures markets: A new look," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 279-300, March.
    6. Yan Sun & Xiaodong Lin, 2012. "Regularization for stationary multivariate time series," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 573-586, January.
    7. Antonakakis, Nikolaos & Floros, Christos & Kizys, Renatas, 2016. "Dynamic spillover effects in futures markets: UK and US evidence," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 406-418.
    8. repec:dau:papers:123456789/14980 is not listed on IDEAS
    9. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    10. Olivier Ledoit & Pedro Santa-Clara & Michael Wolf, 2003. "Flexible Multivariate GARCH Modeling with an Application to International Stock Markets," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 735-747, August.
    11. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    12. Shahzad, Syed Jawad Hussain & Mensi, Walid & Hammoudeh, Shawkat & Rehman, Mobeen Ur & Al-Yahyaee, Khamis H., 2018. "Extreme dependence and risk spillovers between oil and Islamic stock markets," Emerging Markets Review, Elsevier, vol. 34(C), pages 42-63.
    13. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
    14. Julien Chevallier & Florian Ielpo, 2013. "Volatility spillovers in commodity markets," Applied Economics Letters, Taylor & Francis Journals, vol. 20(13), pages 1211-1227, September.
    15. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
    16. Creti, Anna & Joëts, Marc & Mignon, Valérie, 2013. "On the links between stock and commodity markets' volatility," Energy Economics, Elsevier, vol. 37(C), pages 16-28.
    17. Adams, Zeno & Glück, Thorsten, 2015. "Financialization in commodity markets: A passing trend or the new normal?," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 93-111.
    18. Yiuman Tse, 1999. "Price discovery and volatility spillovers in the DJIA index and futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(8), pages 911-930, December.
    19. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    20. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    21. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    22. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    23. Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
    24. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    25. Algieri, Bernardina & Leccadito, Arturo, 2017. "Assessing contagion risk from energy and non-energy commodity markets," Energy Economics, Elsevier, vol. 62(C), pages 312-322.
    26. Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
    27. Julien Chevallier & Florian Ielpo, 2013. "The Economics of Commodity Markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02879507, HAL.
    28. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    29. repec:hal:journl:peer-00732539 is not listed on IDEAS
    30. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    31. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    32. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    33. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    34. Shahzad, Syed Jawad Hussain & Hernandez, Jose Arreola & Al-Yahyaee, Khamis Hamed & Jammazi, Rania, 2018. "Asymmetric risk spillovers between oil and agricultural commodities," Energy Policy, Elsevier, vol. 118(C), pages 182-198.
    35. Laurent A. F. Callot & Anders B. Kock & Marcelo C. Medeiros, 2017. "Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 140-158, January.
    36. Christian Hafner & Philip Hans Franses, 2009. "A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 612-631.
    37. Roy, Rudra Prosad & Sinha Roy, Saikat, 2017. "Financial contagion and volatility spillover: An exploration into Indian commodity derivative market," Economic Modelling, Elsevier, vol. 67(C), pages 368-380.
    38. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    39. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    40. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    41. Jung, R.C. & Maderitsch, R., 2014. "Structural breaks in volatility spillovers between international financial markets: Contagion or mere interdependence?," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 331-342.
    42. Billio, Monica & Caporin, Massimiliano, 2009. "A generalized Dynamic Conditional Correlation model for portfolio risk evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2566-2578.
    43. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    44. Uddin, Gazi Salah & Hernandez, Jose Areola & Shahzad, Syed Jawad Hussain & Hedström, Axel, 2018. "Multivariate dependence and spillover effects across energy commodities and diversification potentials of carbon assets," Energy Economics, Elsevier, vol. 71(C), pages 35-46.
    45. Bauwens, Luc & Grigoryeva, Lyudmila & Ortega, Juan-Pablo, 2016. "Estimation and empirical performance of non-scalar dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 17-36.
    46. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    47. Zhong, Maosen & Darrat, Ali F. & Otero, Rafael, 2004. "Price discovery and volatility spillovers in index futures markets: Some evidence from Mexico," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3037-3054, December.
    48. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    49. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    50. Christian Francq & Jean-Michel Zakoïan, 2016. "Estimating multivariate volatility models equation by equation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 613-635, June.
    51. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    52. Yaxian Lu & Longguang Yang & Lihong Liu, 2019. "Volatility Spillovers between Crude Oil and Agricultural Commodity Markets since the Financial Crisis," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    53. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    54. Liu, Ming-Lei & Ji, Qiang & Fan, Ying, 2013. "How does oil market uncertainty interact with other markets? An empirical analysis of implied volatility index," Energy, Elsevier, vol. 55(C), pages 860-868.
    55. Adams, Zeno & Glueck, Thorsten, 2014. "Financialization in Commodity Markets: A Passing Trend or the New Normal?," Working Papers on Finance 1413, University of St. Gallen, School of Finance, revised Aug 2015.
    56. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Hao & Feng He & Feng Ma & Tong Fu, 2023. "Trading around the clock: Revisit volatility spillover between crude oil and equity markets in different trading sessions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(6), pages 771-791, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    2. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    3. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    4. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    5. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    6. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    7. L. Bauwens & E. Otranto, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," Working Paper CRENoS 202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    8. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    9. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    10. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    11. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    12. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    13. Nadine McCloud & Yongmiao Hong, 2011. "Testing The Structure Of Conditional Correlations In Multivariate Garch Models: A Generalized Cross‐Spectrum Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 991-1037, November.
    14. Adams, Zeno & Füss, Roland & Glück, Thorsten, 2017. "Are correlations constant? Empirical and theoretical results on popular correlation models in finance," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 9-24.
    15. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    16. Annastiina Silvennoinen & Timo Teräsvirta, 2017. "Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model," CREATES Research Papers 2017-28, Department of Economics and Business Economics, Aarhus University.
    17. Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    18. Bauwens, Luc & Xu, Yongdeng, 2023. "DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations," International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
    19. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
    20. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:42:y:2022:i:5:p:868-887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.