Advanced Search
MyIDEAS: Login to save this paper or follow this series

Robust Ranking of Multivariate GARCH Models by Problem Dimension

Contents:

Author Info

  • Michael McAleer

    (Erasmus University Rotterdam,Tinbergen Institute,Kyoto University,Complutense University of Madrid)

  • Massimiliano Caporin

    (Department of Economics and Management“Marco Fanno”University of Padova,Italy)

Abstract

During the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. Recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. We provide an empirical comparison of alternative MGARCH models, namely BEKK, DCC, Corrected DCC (cDCC), CCC, OGARCH Exponentially Weighted Moving Average, and covariance shrinking, using historical data for 89 US equities. We contribute to the literature in several directions. First, we consider a wide range of models, including the recent cDCC and covariance shrinking models. Second, we use a range of tests and approaches for direct and indirect model comparison, including the Model Confidence Set. Third, we examine how the robust model rankings are influenced by the cross- sectional dimension of the problem.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.kier.kyoto-u.ac.jp/DP/DP815.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Kyoto University, Institute of Economic Research in its series KIER Working Papers with number 815.

as in new window
Length:
Date of creation: Apr 2012
Date of revision:
Handle: RePEc:kyo:wpaper:815

Contact details of provider:
Postal: Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501
Phone: +81-75-753-7102
Fax: +81-75-753-7193
Email:
Web page: http://www.kier.kyoto-u.ac.jp/eng/index.html
More information through EDIRC

Related research

Keywords: Covariance forecasting; model confidence set; robust model ranking; MGARCH; robust model comparison.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Multivariate Stochastic Volatility with Cross Leverage," CARF F-Series CARF-F-191, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  2. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
  3. Hafner, Christian M. & Preminger, Arie, 2009. "On asymptotic theory for multivariate GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2044-2054, October.
  4. Valeri Voev, 2009. "On the Economic Evaluation of Volatility Forecasts," CREATES Research Papers 2009-56, School of Economics and Management, University of Aarhus.
  5. Yiu Kuen Tse & Albert K. C. Tsui, 2000. "A Multivariate GARCH Model with Time-Varying Correlations," Econometric Society World Congress 2000 Contributed Papers 0250, Econometric Society.
  6. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  7. Rossi, Eduardo & Spazzini, Filippo, 2008. "Model and distribution uncertainty in multivariate GARCH estimation: a Monte Carlo analysis," MPRA Paper 12260, University Library of Munich, Germany.
  8. Christian Hafner & Philip Hans Franses, 2009. "A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 612-631.
  9. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 1-46 National Bureau of Economic Research, Inc.
  10. Francq, Christian & Zakoian, Jean-Michel, 2010. "QML estimation of a class of multivariate GARCH models without moment conditions on the observed process," MPRA Paper 20779, University Library of Munich, Germany.
  11. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
  12. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  13. Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
  14. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
  15. Asai, M. & Caporin, M., 2009. "Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2009-51, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  16. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, 03.
  17. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," CARF F-Series CARF-F-156, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  18. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
  19. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1554-1583, December.
  20. Neil Shephard & Ole E. Barndorff-Nielsen & Peter Reinhard Hansen, 2008. "Multivariate realised kernels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Economics Series Working Papers 397, University of Oxford, Department of Economics.
  21. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
  22. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  23. Robert Engle & Neil Shephard & Kevin Shepphard, 2008. "Fitting vast dimensional time-varying covariance models," OFRC Working Papers Series 2008fe30, Oxford Financial Research Centre.
  24. Massimiliano Caporin & Michael McAleer, 2008. "Scalar BEKK and indirect DCC," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 537-549.
  25. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
  26. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
  27. Olivier Ledoit & Michael Wolf, 2001. "Improved estimation of the covariance matrix of stock returns with an application to portofolio selection," Economics Working Papers 586, Department of Economics and Business, Universitat Pompeu Fabra.
  28. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
  29. LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," CORE Discussion Papers 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  30. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  31. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  32. Lanne, Markku & Saikkonen, Pentti, 2005. "A Multivariate Generalized Orthogonal Factor GARCH Model," MPRA Paper 23714, University Library of Munich, Germany.
  33. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-84, September.
  34. Sheppard, Kevin & Cappiello, Lorenzo & Engle, Robert F., 2003. "Asymmetric dynamics in the correlations of global equity and bond returns," Working Paper Series 0204, European Central Bank.
  35. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
  36. Massimiliano Caporin & Paolo Paruolo, 2009. "Structured Multivariate Volatility Models," "Marco Fanno" Working Papers 0091, Dipartimento di Scienze Economiche "Marco Fanno".
  37. Peter Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models:The Model Confidence Set Approach," Working Papers 2003-05, Brown University, Department of Economics.
  38. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, . "Multivariate GARCH models: a survey," CORE Discussion Papers RP -1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  39. Shiqing Ling & Michael McAleer, 2001. "Asymptotic Theory for a Vector ARMA-GARCH Model," ISER Discussion Paper 0549, Institute of Social and Economic Research, Osaka University.
  40. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  41. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
  42. Andrew J. Patton & Kevin Sheppard, 2008. "Evaluating Volatility and Correlation Forecasts," OFRC Working Papers Series 2008fe22, Oxford Financial Research Centre.
  43. I. D. Vrontos & P. Dellaportas & D. N. Politis, 2003. "A full-factor multivariate GARCH model," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 312-334, December.
  44. Miguel A. Ferreira, 2005. "Evaluating Interest Rate Covariance Models Within a Value-at-Risk Framework," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(1), pages 126-168.
  45. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
  46. Gilles Zumbach, 2009. "The empirical properties of large covariance matrices," Papers 0903.1525, arXiv.org.
  47. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
  48. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
  49. Monica Billio & Massimiliano Caporin & Michele Gobbo, 2006. "Flexible Dynamic Conditional Correlation multivariate GARCH models for asset allocation," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 2(2), pages 123-130, March.
  50. Alessandra Amendola & Giuseppe Storti, 2009. "Combination of multivariate volatility forecasts," SFB 649 Discussion Papers SFB649DP2009-007, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  51. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  52. Adam Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2009. "Evaluating multivariate volatility forecasts," NCER Working Paper Series 41, National Centre for Econometric Research, revised 25 Nov 2009.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
  2. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2013. "Do High-Frequency Data Improve High-Dimensional Portfolio Allocations?," SFB 649 Discussion Papers SFB649DP2013-014, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:815. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ryo Okui).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.