IDEAS home Printed from https://ideas.repec.org/p/cdf/wpaper/2019-5.html
   My bibliography  Save this paper

DCC and DECO-HEAVY: a multivariate GARCH model based on realized variances and correlations

Author

Listed:

Abstract

This paper introduces the scalar DCC-HEAVY and DECO-HEAVY models for conditional variances and correlations of daily returns based on measures of realized variances and correlations built from intraday data. Formulas for multi-step forecasts of conditional variances and correlations are provided. Asymmetric versions of the models are developed. An empirical study shows that in terms of forecasts the new HEAVY models outperform the BEKKHEAVY model based on realized covariances, and the BEKK, DCC and DECO multivariate GARCH models based exclusively on daily data.

Suggested Citation

  • Bauwens, Luc & Xu, Yongdeng, 2019. "DCC and DECO-HEAVY: a multivariate GARCH model based on realized variances and correlations," Cardiff Economics Working Papers E2019/5, Cardiff University, Cardiff Business School, Economics Section, revised Aug 2021.
  • Handle: RePEc:cdf:wpaper:2019/5
    as

    Download full text from publisher

    File URL: http://carbsecon.com/wp/E2019_5.pdf
    File Function: Main Text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting Comparison of Long Term Component Dynamic Models for Realized Covariance Matrices," Annals of Economics and Statistics, GENES, issue 123-124, pages 103-134.
    2. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    3. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    4. Manuela BRAIONE, 2016. "A time-varying long run HEAVY model," LIDAM Reprints CORE 2853, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    6. Anne Opschoor & Pawel Janus & André Lucas & Dick Van Dijk, 2018. "New HEAVY Models for Fat-Tailed Realized Covariances and Returns," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 643-657, October.
    7. Xin Jin & John M. Maheu, 2013. "Modeling Realized Covariances and Returns," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(2), pages 335-369, March.
    8. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    9. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
    10. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    11. Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
    12. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    13. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    14. Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate high‐frequency‐based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 907-933, September.
    15. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012. "The conditional autoregressive Wishart model for multivariate stock market volatility," Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
    16. Braione, Manuela, 2016. "A time-varying long run HEAVY model," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 36-44.
    17. Luc Bauwens & Edoardo Otranto, 2016. "Modeling the Dependence of Conditional Correlations on Market Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 254-268, April.
    18. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    19. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    20. P Gorgi & P R Hansen & P Janus & S J Koopman, 2019. "Realized Wishart-GARCH: A Score-driven Multi-Asset Volatility Model," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 17(1), pages 1-32.
    21. Oh, Dong Hwan & Patton, Andrew J., 2016. "High-dimensional copula-based distributions with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
    22. Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
    23. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    24. Peter Reinhard Hansen & Asger Lunde & Valeri Voev, 2014. "Realized Beta Garch: A Multivariate Garch Model With Realized Measures Of Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 774-799, August.
    25. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    26. BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012. "Dynamic conditional correlation models for realized covariance matrices," LIDAM Discussion Papers CORE 2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    27. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    28. Peter Reinhard Hansen & Zhuo Huang & Howard Howan Shek, 2012. "Realized GARCH: a joint model for returns and realized measures of volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 877-906, September.
    29. Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bauwens, Luc & Otranto, Edoardo, 2023. "Realized Covariance Models with Time-varying Parameters and Spillover Effects," LIDAM Discussion Papers CORE 2023019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. L. Bauwens & E. Otranto, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," Working Paper CRENoS 202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    3. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
    4. BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2016. "Multiplicative Conditional Correlation Models for Realized Covariance Matrices," LIDAM Discussion Papers CORE 2016041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Bauwens, Luc & Braione, Manuela & Storti, Giuseppe, 2017. "A dynamic component model for forecasting high-dimensional realized covariance matrices," Econometrics and Statistics, Elsevier, vol. 1(C), pages 40-61.
    6. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    7. Andrea BUCCI, 2017. "Forecasting Realized Volatility A Review," Journal of Advanced Studies in Finance, ASERS Publishing, vol. 8(2), pages 94-138.
    8. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    9. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    10. Gribisch, Bastian & Hartkopf, Jan Patrick, 2023. "Modeling realized covariance measures with heterogeneous liquidity: A generalized matrix-variate Wishart state-space model," Journal of Econometrics, Elsevier, vol. 235(1), pages 43-64.
    11. Ilya Archakov & Peter Reinhard Hansen & Asger Lunde, 2020. "A Multivariate Realized GARCH Model," Papers 2012.02708, arXiv.org.
    12. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
    13. Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
    14. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    15. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    16. Gribisch, Bastian & Hartkopf, Jan Patrick & Liesenfeld, Roman, 2020. "Factor state–space models for high-dimensional realized covariance matrices of asset returns," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 1-20.
    17. Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
    18. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    19. Emilija Dzuverovic & Matteo Barigozzi, 2023. "Hierarchical DCC-HEAVY Model for High-Dimensional Covariance Matrices," Papers 2305.08488, arXiv.org.
    20. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.

    More about this item

    Keywords

    correlation forecasting; dynamic conditional correlation; equicorrelation; high-frequency data; multivariate volatility.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdf:wpaper:2019/5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yongdeng Xu (email available below). General contact details of provider: https://edirc.repec.org/data/ecscfuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.