IDEAS home Printed from https://ideas.repec.org/a/uwp/landec/v90y2014i4p575-586.html
   My bibliography  Save this article

Assessing the Land Use Changes and Greenhouse Gas Emissions of Biofuels: Elucidating the Crop Yield Effects

Author

Listed:
  • Alexandre Gohin

Abstract

Available estimates of the land use changes and greenhouse gas emissions of biofuels differ significantly across economic models. This paper focuses on the impacts of price-induced yield assumptions on U.S. corn ethanol results. These assumptions have dramatic impacts within the FAPRI modeling framework, but limited ones within the GTAP-BIO model. I show that these sensitivity to yield assumption results are not comparable because the ex ante land and production elasticities assumed in these two models are not comparable. The analysis reveals that the current focus solely on the value of the price-induced yield elasticity can be misleading.

Suggested Citation

  • Alexandre Gohin, 2014. "Assessing the Land Use Changes and Greenhouse Gas Emissions of Biofuels: Elucidating the Crop Yield Effects," Land Economics, University of Wisconsin Press, vol. 90(4), pages 575-586.
  • Handle: RePEc:uwp:landec:v:90:y:2014:i:4:p:575-586
    as

    Download full text from publisher

    File URL: http://le.uwpress.org/cgi/reprint/90/4/575
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alain Carpentier & Elodie Letort, 2012. "Accounting for Heterogeneity in Multicrop Micro-Econometric Models: Implications for Variable Input Demand Modeling," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(1), pages 209-224.
    2. Jerome Dumortier & Dermot J. Hayes & Miguel Carriquiry & Fengxia Dong & Xiaodong Du & Amani Elobeid & Jacinto F. Fabiosa & Simla Tokgoz, 2011. "Sensitivity of Carbon Emission Estimates from Indirect Land-Use Change," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(4), pages 673-673.
    3. Amani E. Elobeid & Miguel A. Carriquiry & Jacinto F. Fabiosa, 2012. "Land-Use Change And Greenhouse Gas Emissions In The Fapri-Card Model System: Addressing Bias And Uncertainty," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-26.
    4. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    5. Hertel, Thomas W., 2010. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 92639, Agricultural and Applied Economics Association.
    6. David Laborde & Hugo Valin, 2012. "MODELING LAND-USE CHANGES IN A GLOBAL CGE: ASSESSING THE EU BIOFUEL MANDATES WITH THE MIRAGE-BioF MODEL," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-39.
    7. Thomas W. Hertel, 2011. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?-super- 1," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 259-275.
    8. Alla A. Golub & Thomas W. Hertel, 2012. "Modeling Land-Use Change Impacts Of Biofuels In The Gtap-Bio Framework," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Brunelle & P. Dumas & W. Ben Aoun & Benoit Gabrielle, 2018. "Unravelling Land-Use Change Mechanisms at Global and Regional Scales," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-14, September.
    2. Alexandre Gohin, 2015. "Understanding the revised land use changes and greenhouse gas emissions induced by biofuels," Working Papers SMART 15-08, INRAE UMR SMART.
    3. Bruce A. Babcock & Zabid Iqbal, 2014. "Using Recent Land Use Changes to Validate Land Use Change Models," Center for Agricultural and Rural Development (CARD) Publications 14-sr109, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    4. Gohin, Alexandre, 2015. "Understanding the revised land use changes and greenhouse gas emissions induced by biofuels," Working Papers 208914, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    5. Iglesias Pinedo, Wilman J., 2021. "The impact of Renewable Energy Standards on the biomass supply and agricultural land demand in the US Great Plains Region," 2021 Annual Meeting, August 1-3, Austin, Texas 314085, Agricultural and Applied Economics Association.
    6. Hyunseok Kim & GianCarlo Moschini, 2018. "The Dynamics of Supply: U.S. Corn and Soybeans in the Biofuel Era," Land Economics, University of Wisconsin Press, vol. 94(4), pages 593-613.
    7. Gohin, Alexandre, 2016. "Understanding the revised CARB estimates of the land use changes and greenhouse gas emissions induced by biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 402-412.
    8. Sampson, Gabriel S. & Al-Sudani, Amer & Bergtold, Jason, 2021. "Local irrigation response to ethanol expansion in the High Plains Aquifer," Resource and Energy Economics, Elsevier, vol. 66(C).
    9. Debnath, Deepayan & Whistance, Jarrett & Thompson, Wyatt, 2017. "The causes of two-way U.S.–Brazil ethanol trade and the consequences for greenhouse gas emission," Energy, Elsevier, vol. 141(C), pages 2045-2053.
    10. Basak Bayramoglu & Jean-François Jacques, 2016. "The economic and environmental effects of a biofuel mandate policy: the case of France [Les effets économiques et environnementaux d’une politique d’incorporation obligatoire de biocarburants : le ," Post-Print hal-02877013, HAL.
    11. Ehsanreza Sajedinia & Wallace E. Tyner, 2021. "Use of General Equilibrium Models in Evaluating Biofuels Policies," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 14, pages 437-465, World Scientific Publishing Co. Pte. Ltd..
    12. Sajedinia, Ehsanreza & Tyner, Wally, 2017. "Use of General Equilibrium Models in Evaluating Biofuels Policies," Conference papers 332885, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mekbib G. Haile & Matthias Kalkuhl & Joachim Braun, 2014. "Inter- and intra-seasonal crop acreage response to international food prices and implications of volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 693-710, November.
    2. T. Brunelle & P. Dumas & W. Ben Aoun & Benoit Gabrielle, 2018. "Unravelling Land-Use Change Mechanisms at Global and Regional Scales," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-14, September.
    3. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    4. Kastratovic, Radovan, 2019. "Impact of foreign direct investment on greenhouse gas emissions in agriculture of developing countries," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), July.
    5. Timothy A. Wise, 2013. "Can We Feed the World in 2050? A Scoping Paper to Assess the Evidence," GDAE Working Papers 13-04, GDAE, Tufts University.
    6. Alexandre Gohin, 2013. "The land use changes of European biodiesel: sensitivity to crop yield evolutions," Working Papers SMART 13-13, INRAE UMR SMART.
    7. Forslund, Agneta & Gohin, Alexandre & Le Mouël, Chantal & Levert, Fabrice, 2014. "Biodiesel vs. ethanol, UE vs. US biofuels: So different in terms of LUC impact?," Working Papers 207810, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    8. Delzeit, Ruth & Klepper, Gernot & Söder, Mareike, 2017. "Indirect land use change (iLUC) revisited: An evaluation of current policy proposals," Kiel Working Papers 2075, Kiel Institute for the World Economy (IfW Kiel).
    9. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Zanetti De Lima, C. & Gurgel, A. & Teixeira, E.C., 2018. "Synergies of low-carbon technologies and land-sparing in Brazilian regions," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277091, International Association of Agricultural Economists.
    11. Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    12. Amani Elobeid & Miguel Carriquiry & Jerome Dumortier & David Swenson & Dermot J. Hayes, 2021. "China‐U.S. trade dispute and its impact on global agricultural markets, the U.S. economy, and greenhouse gas emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 647-672, September.
    13. Iyabo Adeola Olanrele & Adedoyin I. Lawal & Ezekiel Oseni & Ahmed Oluwatobi Adekunle & Bukola, B. Lawal-Adedoyin & Crystal O. Elleke & Racheal Ojeka-John & Henry Nweke-Love, 2020. "Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 469-478.
    14. Kamel Louhichi & Hugo Valin, 2012. "Impact of EU biofuel policies on the French arable sector: A micro-level analysis using global market and farm-based supply models," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 93(3), pages 233-272.
    15. Dumortier, Jerome & Elobeid, Amani, 2021. "Effects of a carbon tax in the United States on agricultural markets and carbon emissions from land-use change," Land Use Policy, Elsevier, vol. 103(C).
    16. Gohin, Alexandre, 2016. "Understanding the revised CARB estimates of the land use changes and greenhouse gas emissions induced by biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 402-412.
    17. Kauffman, Nathan & Dumortier, Jerome & Hayes, Dermot J. & Brown, Robert C. & Laird, David, 2014. "Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity," ISU General Staff Papers 201404010700001488, Iowa State University, Department of Economics.
    18. Stephen Shisanya & Paramu Mafongoya, 2016. "Adaptation to climate change and the impacts on household food security among rural farmers in uMzinyathi District of Kwazulu-Natal, South Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 597-608, June.
    19. Ngoma, Hambulo & Pelletier, Johanne & Mulenga, Brian P. & Subakanya, Mitelo, 2021. "Climate-smart agriculture, cropland expansion and deforestation in Zambia: Linkages, processes and drivers," Land Use Policy, Elsevier, vol. 107(C).
    20. Basak Bayramoglu & Jean-François Jacques, 2016. "The economic and environmental effects of a biofuel mandate policy: the case of France [Les effets économiques et environnementaux d’une politique d’incorporation obligatoire de biocarburants : le ," Post-Print hal-02877013, HAL.

    More about this item

    JEL classification:

    • Q11 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Aggregate Supply and Demand Analysis; Prices
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:landec:v:90:y:2014:i:4:p:575-586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://le.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.