IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09945-w.html
   My bibliography  Save this article

Key determinants of global land-use projections

Author

Listed:
  • Elke Stehfest

    (PBL Netherlands Environmental Assessment Agency)

  • Willem-Jan Zeist

    (PBL Netherlands Environmental Assessment Agency)

  • Hugo Valin

    (International Institute for Applied System Analysis (IIASA))

  • Petr Havlik

    (International Institute for Applied System Analysis (IIASA))

  • Alexander Popp

    (Potsdam Institute for Climate Impact Research (PIK))

  • Page Kyle

    (Joint Global Change Research Institute, Pacific Northwest National Laboratory)

  • Andrzej Tabeau

    (Wageningen University and Research)

  • Daniel Mason-D’Croz

    (International Food Policy Research Institute (IFPRI)
    Commonwealth Scientific and Industrial Research Organisation (CSIRO))

  • Tomoko Hasegawa

    (International Institute for Applied System Analysis (IIASA)
    National Institute for Environmental Studies (NIES)
    Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu)

  • Benjamin L. Bodirsky

    (Potsdam Institute for Climate Impact Research (PIK))

  • Katherine Calvin

    (Joint Global Change Research Institute, Pacific Northwest National Laboratory)

  • Jonathan C. Doelman

    (PBL Netherlands Environmental Assessment Agency)

  • Shinichiro Fujimori

    (International Institute for Applied System Analysis (IIASA)
    National Institute for Environmental Studies (NIES)
    Kyoto University)

  • Florian Humpenöder

    (Potsdam Institute for Climate Impact Research (PIK))

  • Hermann Lotze-Campen

    (Potsdam Institute for Climate Impact Research (PIK)
    Humboldt-Universität zu Berlin)

  • Hans Meijl

    (Wageningen University and Research)

  • Keith Wiebe

    (International Food Policy Research Institute (IFPRI))

Abstract

Land use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; however, model quantification of these scenarios shows substantial heterogeneity in land-use projections. Here we build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. Spread across models arises mostly from diverging sensitivities to long-term drivers and from various representations of land-use regulation and trade, calling for reconciliation efforts and more empirical research. Most influential determinants for future cropland and pasture extent are population and agricultural efficiency. Furthermore, land-use regulation and consumption changes can play a key role in reducing both land use and food-security risks, and need to be central elements in sustainable development strategies.

Suggested Citation

  • Elke Stehfest & Willem-Jan Zeist & Hugo Valin & Petr Havlik & Alexander Popp & Page Kyle & Andrzej Tabeau & Daniel Mason-D’Croz & Tomoko Hasegawa & Benjamin L. Bodirsky & Katherine Calvin & Jonathan C, 2019. "Key determinants of global land-use projections," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09945-w
    DOI: 10.1038/s41467-019-09945-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09945-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09945-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katherine Calvin & Marshall Wise & Page Kyle & Pralit Patel & Leon Clarke & Jae Edmonds, 2014. "Trade-offs of different land and bioenergy policies on the path to achieving climate targets," Climatic Change, Springer, vol. 123(3), pages 691-704, April.
    2. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    3. Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
    4. Dietrich, Jan Philipp & Schmitz, Christoph & Lotze-Campen, Hermann & Popp, Alexander & Müller, Christoph, 2014. "Forecasting technological change in agriculture—An endogenous implementation in a global land use model," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 236-249.
    5. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    6. Emanuele Borgonovo, 2010. "A Methodology for Determining Interactions in Probabilistic Safety Assessment Models by Varying One Parameter at a Time," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 385-399, March.
    7. Alexander Popp & Florian Humpenöder & Isabelle Weindl & Benjamin Leon Bodirsky & Markus Bonsch & Hermann Lotze-Campen & Christoph Müller & Anne Biewald & Susanne Rolinski & Miodrag Stevanovic & Jan Ph, 2014. "Land-use protection for climate change mitigation," Nature Climate Change, Nature, vol. 4(12), pages 1095-1098, December.
    8. Hertel, Thomas W., 2010. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 92639, Agricultural and Applied Economics Association.
    9. Benjamin T. Phalan, 2018. "What Have We Learned from the Land Sparing-sharing Model?," Sustainability, MDPI, vol. 10(6), pages 1-24, May.
    10. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    11. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    12. G. Marangoni & M. Tavoni & V. Bosetti & E. Borgonovo & P. Capros & O. Fricko & D. E. H. J. Gernaat & C. Guivarch & P. Havlik & D. Huppmann & N. Johnson & P. Karkatsoulis & I. Keppo & V. Krey & E. Ó Br, 2017. "Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways," Nature Climate Change, Nature, vol. 7(2), pages 113-117, February.
    13. Marshall Wise & Kate Calvin & Page Kyle & Patrick Luckow & Jae Edmonds, 2014. "Economic And Physical Modeling Of Land Use In Gcam 3.0 And An Application To Agricultural Productivity, Land, And Terrestrial Carbon," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-22.
    14. Thomas W. Hertel, 2011. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?-super- 1," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 259-275.
    15. Camba Sans, Gonzalo Hernán & Aguiar, Sebastián & Vallejos, María & Paruelo, José María, 2018. "Assessing the effectiveness of a land zoning policy in the Dry Chaco. The Case of Santiago del Estero, Argentina," Land Use Policy, Elsevier, vol. 70(C), pages 313-321.
    16. Stehfest, Elke & Berg, Maurits van den & Woltjer, Geert & Msangi, Siwa & Westhoek, Henk, 2013. "Options to reduce the environmental effects of livestock production – Comparison of two economic models," Agricultural Systems, Elsevier, vol. 114(C), pages 38-53.
    17. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    18. Benjamin Leon Bodirsky & Susanne Rolinski & Anne Biewald & Isabelle Weindl & Alexander Popp & Hermann Lotze-Campen, 2015. "Global Food Demand Scenarios for the 21st Century," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-27, November.
    19. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    20. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    21. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    22. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Arshad, Salman & Ahmad, Sajid Rashid & Abbas, Sawaid & Asharf, Ather & Siddiqui, Nadia Asad & Islam, Zia ul, 2022. "Quantifying the contribution of diminishing green spaces and urban sprawl to urban heat island effect in a rapidly urbanizing metropolitan city of Pakistan," Land Use Policy, Elsevier, vol. 113(C).
    3. Florian Humpenöder & Alexander Popp & Carl-Friedrich Schleussner & Anton Orlov & Michael Gregory Windisch & Inga Menke & Julia Pongratz & Felix Havermann & Wim Thiery & Fei Luo & Patrick v. Jeetze & J, 2022. "Overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Müller-Casseres, Eduardo & Edelenbosch, Oreane Y. & Szklo, Alexandre & Schaeffer, Roberto & van Vuuren, Detlef P., 2021. "Global futures of trade impacting the challenge to decarbonize the international shipping sector," Energy, Elsevier, vol. 237(C).
    5. Yu, Wusheng & Clora, Francesco & Costa, Louis & Baudry, Gino, 2021. "Dietary Transitions As Climate Mitigation Measures in Europe: Implications of Supply-Side Responses and Trade Policy Regimes," 2021 Conference, August 17-31, 2021, Virtual 315912, International Association of Agricultural Economists.
    6. Sarfo, Isaac & Bi, Shuoben & Xu, Xiuhua & Yeboah, Emmanuel & Kwang, Clement & Batame, Michael & Addai, Foster Kofi & Adamu, Umar Wakil & Appea, Emmanuella Aboagye & Djan, Michael Atuahene & Otchwemah,, 2023. "Planning for cooler cities in Ghana: Contribution of green infrastructure to urban heat mitigation in Kumasi Metropolis," Land Use Policy, Elsevier, vol. 133(C).
    7. Mark Bomford, 2023. "More bytes per acre: do vertical farming’s land sparing promises stand on solid ground?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 40(3), pages 879-895, September.
    8. Bruno, Daniel & Sorando, Ricardo & à lvarez-Farizo, Begoña & Castellano, Clara & Céspedes, Vanessa & Gallardo, Belinda & Jiménez, Juan J. & López, M. Victoria & López-Flores, Rocío & Moret-FernÃ, 2021. "Depopulation impacts on ecosystem services in Mediterranean rural areas," Ecosystem Services, Elsevier, vol. 52(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sands, Ronald & Jones, Carol & Marshall, Elizabeth P., 2014. "Global Drivers of Agricultural Demand and Supply," Economic Research Report 186137, United States Department of Agriculture, Economic Research Service.
    2. Kipling, Richard P. & Bannink, André & Bellocchi, Gianni & Dalgaard, Tommy & Fox, Naomi J. & Hutchings, Nicholas J. & Kjeldsen, Chris & Lacetera, Nicola & Sinabell, Franz & Topp, Cairistiona F.E. & va, 2016. "Modeling European ruminant production systems: Facing the challenges of climate change," Agricultural Systems, Elsevier, vol. 147(C), pages 24-37.
    3. John T. Saunders & Marcel Adenäuer & Jonathan Brooks, 2019. "Analysis of long-term challenges for agricultural markets," OECD Food, Agriculture and Fisheries Papers 131, OECD Publishing.
    4. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    5. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    6. Thomas W. Hertel & Uris Lantz C. Baldos & Dominique van der Mensbrugghe, 2016. "Predicting Long-Term Food Demand, Cropland Use, and Prices," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 417-441, October.
    7. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    8. Christoph Schmitz & Hans van Meijl & Page Kyle & Gerald C. Nelson & Shinichiro Fujimori & Angelo Gurgel & Petr Havlik & Edwina Heyhoe & Daniel Mason d'Croz & Alexander Popp & Ron Sands & Andrzej Tabea, 2014. "Land-use change trajectories up to 2050: insights from a global agro-economic model comparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 69-84, January.
    9. Zhao, Xin & Calvin, Katherine V. & Wise, Marshall A. & Iyer, Gokul, 2021. "The role of global agricultural market integration in multiregional economic modeling: Using hindcast experiments to validate an Armington model," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 1-17.
    10. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    11. Gerald C. Nelson & Dominique Mensbrugghe & Helal Ahammad & Elodie Blanc & Katherine Calvin & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campen & Martin Lampe & Daniel Ma, 2014. "Agriculture and climate change in global scenarios: why don't the models agree," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 85-101, January.
    12. Fukase, Emiko & Martin, Will, 2020. "Economic growth, convergence, and world food demand and supply," World Development, Elsevier, vol. 132(C).
    13. Nelson B. Villoria & Derek Byerlee & James Stevenson, 2014. "The Effects of Agricultural Technological Progress on Deforestation: What Do We Really Know?," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 36(2), pages 211-237.
    14. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Palazzo,Amanda & Valin,Hugo Jean Pierre & Batka,Miroslav & Havlík,Petr, 2019. "Investment Needs for Irrigation Infrastructure along Different Socioeconomic Pathways," Policy Research Working Paper Series 8744, The World Bank.
    16. Philip G. Pardey & Jason M. Beddow & Terrance M. Hurley & Timothy K.M. Beatty & Vernon R. Eidman, 2014. "A Bounds Analysis of World Food Futures: Global Agriculture Through to 2050," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), pages 571-589, October.
    17. Food and Agricultural Organization [FAO], 2016. "Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade," Working Papers id:8512, eSocialSciences.
    18. Bai, Yuping & Deng, Xiangzheng & Cheng, Yunfei & Hu, Yecui & Zhang, Lijin, 2021. "Exploring regional land use dynamics under shared socioeconomic pathways: A case study in Inner Mongolia, China," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    19. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    20. Chantal Le Mouël & Anna Birgit Milford & Benjamin L. Bodirsky & Susanne Rolinski, 2019. "Drivers of meat consumption," Post-Print hal-02175593, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09945-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.