IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v43y2021i1d10.1007_s00291-020-00607-8.html
   My bibliography  Save this article

Last-mile delivery concepts: a survey from an operational research perspective

Author

Listed:
  • Nils Boysen

    (Friedrich-Schiller-Universität Jena)

  • Stefan Fedtke

    (Friedrich-Schiller-Universität Jena)

  • Stefan Schwerdfeger

    (Friedrich-Schiller-Universität Jena
    Friedrich-Schiller-Universität Jena)

Abstract

In the wake of e-commerce and its successful diffusion in most commercial activities, last-mile distribution causes more and more trouble in urban areas all around the globe. Growing parcel volumes to be delivered toward customer homes increase the number of delivery vans entering the city centers and thus add to congestion, pollution, and negative health impact. Therefore, it is anything but surprising that in recent years many novel delivery concepts on the last mile have been innovated. Among the most prominent are unmanned aerial vehicles (drones) and autonomous delivery robots taking over parcel delivery. This paper surveys established and novel last-mile concepts and puts special emphasis on the decision problems to be solved when setting up and operating each concept. To do so, we systematically record the alternative delivery concepts in a compact notation scheme, discuss the most important decision problems, and survey existing research on operations research methods solving these problems. Furthermore, we elaborate promising future research avenues.

Suggested Citation

  • Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
  • Handle: RePEc:spr:orspec:v:43:y:2021:i:1:d:10.1007_s00291-020-00607-8
    DOI: 10.1007/s00291-020-00607-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-020-00607-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-020-00607-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Hochrein & Christoph H. Glock, 2012. "Systematic literature reviews in purchasing and supply management research: a tertiary study," International Journal of Integrated Supply Management, Inderscience Enterprises Ltd, vol. 7(4), pages 215-245.
    2. Gérard P. Cachon & Kaitlin M. Daniels & Ruben Lobel, 2017. "The Role of Surge Pricing on a Service Platform with Self-Scheduling Capacity," Manufacturing & Service Operations Management, INFORMS, vol. 19(3), pages 368-384, July.
    3. Behrend, Moritz & Meisel, Frank, 2018. "The integration of item-sharing and crowdshipping: Can collaborative consumption be pushed by delivering through the crowd?," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 227-243.
    4. Nicolas Poggi & David Carrera & Ricard Gavaldà & Eduard Ayguadé & Jordi Torres, 2014. "A methodology for the evaluation of high response time on E-commerce users and sales," Information Systems Frontiers, Springer, vol. 16(5), pages 867-885, November.
    5. Hande Yaman & Oya Ekin Karasan & Bahar Y. Kara, 2012. "Release Time Scheduling and Hub Location for Next-Day Delivery," Operations Research, INFORMS, vol. 60(4), pages 906-917, August.
    6. Quang Minh Ha & Yves Deville & Quang Dung Pham & Minh Hoàng Hà, 2020. "A hybrid genetic algorithm for the traveling salesman problem with drone," Journal of Heuristics, Springer, vol. 26(2), pages 219-247, April.
    7. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    8. Chao Chen & Shenle Pan, 2016. "Using the Crowd of Taxis to Last Mile Delivery in E-Commerce: a methodological research," Post-Print hal-01480533, HAL.
    9. Taş, Duygu & Gendreau, Michel & Jabali, Ola & Laporte, Gilbert, 2016. "The traveling salesman problem with time-dependent service times," European Journal of Operational Research, Elsevier, vol. 248(2), pages 372-383.
    10. Devari, Aashwinikumar & Nikolaev, Alexander G. & He, Qing, 2017. "Crowdsourcing the last mile delivery of online orders by exploiting the social networks of retail store customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 105-122.
    11. Ozbaygin, Gizem & Savelsbergh, Martin, 2019. "An iterative re-optimization framework for the dynamic vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 207-235.
    12. Joonyup Eun & Byung Duk Song & Sangbok Lee & Dae-Eun Lim, 2019. "Mathematical Investigation on the Sustainability of UAV Logistics," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    13. Ozbaygin, Gizem & Ekin Karasan, Oya & Savelsbergh, Martin & Yaman, Hande, 2017. "A branch-and-price algorithm for the vehicle routing problem with roaming delivery locations," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 115-137.
    14. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    15. Yael Deutsch & Boaz Golany, 2018. "A parcel locker network as a solution to the logistics last mile problem," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 251-261, January.
    16. Renaud Masson & Anna Trentini & Fabien Lehuédé & Nicolas Malhéné & Olivier Péton & Houda Tlahig, 2017. "Optimization of a city logistics transportation system with mixed passengers and goods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 81-109, March.
    17. Anastasios D. Vareias & Panagiotis P. Repoussis & Panagiotis P. Repoussi, 2019. "Assessing Customer Service Reliability in Route Planning with Self-Imposed Time Windows and Stochastic Travel Times," Service Science, INFORMS, vol. 53(1), pages 256-281, February.
    18. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    19. Gerdessen, Johanna C., 1996. "Vehicle routing problem with trailers," European Journal of Operational Research, Elsevier, vol. 93(1), pages 135-147, August.
    20. John Gunnar Carlsson & Siyuan Song, 2018. "Coordinated Logistics with a Truck and a Drone," Management Science, INFORMS, vol. 64(9), pages 4052-4069, September.
    21. Haugland, Dag & Ho, Sin C. & Laporte, Gilbert, 2007. "Designing delivery districts for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 180(3), pages 997-1010, August.
    22. Moshref-Javadi, Mohammad & Lee, Seokcheon & Winkenbach, Matthias, 2020. "Design and evaluation of a multi-trip delivery model with truck and drones," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    23. Jan Fabian Ehmke, 2012. "Routing in City Logistics," International Series in Operations Research & Management Science, in: Integration of Information and Optimization Models for Routing in City Logistics, edition 127, chapter 0, pages 119-156, Springer.
    24. Mauro Dell’Amico & Roberto Montemanni & Stefano Novellani, 2020. "Matheuristic algorithms for the parallel drone scheduling traveling salesman problem," Annals of Operations Research, Springer, vol. 289(2), pages 211-226, June.
    25. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.
    26. Alena Otto & Nils Boysen & Armin Scholl & Rico Walter, 2017. "Ergonomic workplace design in the fast pick area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 945-975, October.
    27. Wenyi Chen & Martijn Mes & Marco Schutten, 2018. "Multi-hop driver-parcel matching problem with time windows," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 517-553, September.
    28. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    29. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    30. Lachapelle, Ugo & Burke, Matthew & Brotherton, Aiden & Leung, Abraham, 2018. "Parcel locker systems in a car dominant city: Location, characterisation and potential impacts on city planning and consumer travel access," Journal of Transport Geography, Elsevier, vol. 71(C), pages 1-14.
    31. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.
    32. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.
    33. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    34. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    35. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    36. Nabila Azi & Michel Gendreau & Jean-Yves Potvin, 2012. "A dynamic vehicle routing problem with multiple delivery routes," Annals of Operations Research, Springer, vol. 199(1), pages 103-112, October.
    37. Terry A. Taylor, 2018. "On-Demand Service Platforms," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 704-720, October.
    38. Stefan Fedtke & Nils Boysen, 2017. "Layout Planning of Sortation Conveyors in Parcel Distribution Centers," Transportation Science, INFORMS, vol. 51(1), pages 3-18, February.
    39. Wanjie Hu & Jianjun Dong & Bon-gang Hwang & Rui Ren & Zhilong Chen, 2019. "A Scientometrics Review on City Logistics Literature: Research Trends, Advanced Theory and Practice," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    40. Albiach, José & Sanchis, José Marí­a & Soler, David, 2008. "An asymmetric TSP with time windows and with time-dependent travel times and costs: An exact solution through a graph transformation," European Journal of Operational Research, Elsevier, vol. 189(3), pages 789-802, September.
    41. Grazia Speranza, M., 2018. "Trends in transportation and logistics," European Journal of Operational Research, Elsevier, vol. 264(3), pages 830-836.
    42. Marlin W. Ulmer & Barrett W. Thomas & Dirk C. Mattfeld, 2019. "Preemptive depot returns for dynamic same-day delivery," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 327-361, December.
    43. Xinan Yang & Arne K. Strauss & Christine S. M. Currie & Richard Eglese, 2016. "Choice-Based Demand Management and Vehicle Routing in E-Fulfillment," Transportation Science, INFORMS, vol. 50(2), pages 473-488, May.
    44. Werners, Brigitte & Wülfing, Thomas, 2010. "Robust optimization of internal transports at a parcel sorting center operated by Deutsche Post World Net," European Journal of Operational Research, Elsevier, vol. 201(2), pages 419-426, March.
    45. Niels Agatz & Ann Campbell & Moritz Fleischmann & Martin Savelsbergh, 2011. "Time Slot Management in Attended Home Delivery," Transportation Science, INFORMS, vol. 45(3), pages 435-449, August.
    46. Ann Melissa Campbell & Martin Savelsbergh, 2006. "Incentive Schemes for Attended Home Delivery Services," Transportation Science, INFORMS, vol. 40(3), pages 327-341, August.
    47. Spliet, Remy & Desaulniers, Guy, 2015. "The discrete time window assignment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 379-391.
    48. Stefan Poikonen & Bruce Golden & Edward A. Wasil, 2019. "A Branch-and-Bound Approach to the Traveling Salesman Problem with a Drone," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 335-346, April.
    49. Gohram Baloch & Fatma Gzara, 2020. "Strategic Network Design for Parcel Delivery with Drones Under Competition," Transportation Science, INFORMS, vol. 54(1), pages 204-228, January.
    50. Wang, Zheng & Sheu, Jiuh-Biing, 2019. "Vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 350-364.
    51. Thu Ba T. Nguyê˜n & Tolga Bektaş & Tom J. Cherrett & Fraser N. McLeod & Julian Allen & Oliver Bates & Marzena Piotrowska & Maja Piecyk & Adrian Friday & Sarah Wise, 2019. "Optimising parcel deliveries in London using dual-mode routing," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(6), pages 998-1010, June.
    52. Roberti, R. & Wen, M., 2016. "The Electric Traveling Salesman Problem with Time Windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 32-52.
    53. Oliveira, Leise Kelli de & Morganti, Eleonora & Dablanc, Laetitia & Oliveira, Renata Lúcia Magalhães de, 2017. "Analysis of the potential demand of automated delivery stations for e-commerce deliveries in Belo Horizonte, Brazil," Research in Transportation Economics, Elsevier, vol. 65(C), pages 34-43.
    54. Lindholm, Maria & Behrends, Sönke, 2012. "Challenges in urban freight transport planning – a review in the Baltic Sea Region," Journal of Transport Geography, Elsevier, vol. 22(C), pages 129-136.
    55. David Pisinger & Stefan Ropke, 2019. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 99-127, Springer.
    56. Ming Liu & Xin Liu & Maoran Zhu & Feifeng Zheng, 2019. "Stochastic Drone Fleet Deployment and Planning Problem Considering Multiple-Type Delivery Service," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    57. Matthias Winkenbach & Paul R. Kleindorfer & Stefan Spinler, 2016. "Enabling Urban Logistics Services at La Poste through Multi-Echelon Location-Routing," Transportation Science, INFORMS, vol. 50(2), pages 520-540, May.
    58. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    59. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2012. "New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 356-371, August.
    60. John Gunnar Carlsson & Erick Delage, 2013. "Robust Partitioning for Stochastic Multivehicle Routing," Operations Research, INFORMS, vol. 61(3), pages 727-744, June.
    61. Claudio Gambella & Joe Naoum-Sawaya & Bissan Ghaddar, 2018. "The Vehicle Routing Problem with Floating Targets: Formulation and Solution Approaches," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 554-569, August.
    62. Kitjacharoenchai, Patchara & Min, Byung-Cheol & Lee, Seokcheon, 2020. "Two echelon vehicle routing problem with drones in last mile delivery," International Journal of Production Economics, Elsevier, vol. 225(C).
    63. Valentina Carbone & Aurélien Rouquet & Christine Roussat, 2017. "The Rise of Crowd Logistics: A New Way to Co‐Create Logistics Value," Post-Print hal-03118967, HAL.
    64. Iman Dayarian & Martin Savelsbergh & John-Paul Clarke, 2020. "Same-Day Delivery with Drone Resupply," Transportation Science, INFORMS, vol. 54(1), pages 229-249, January.
    65. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.
    66. Archetti, Claudia & Savelsbergh, Martin & Speranza, M. Grazia, 2016. "The Vehicle Routing Problem with Occasional Drivers," European Journal of Operational Research, Elsevier, vol. 254(2), pages 472-480.
    67. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    68. Kung, Ling-Chieh & Zhong, Guan-Yu, 2017. "The optimal pricing strategy for two-sided platform delivery in the sharing economy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 1-12.
    69. Hiermann, Gerhard & Puchinger, Jakob & Ropke, Stefan & Hartl, Richard F., 2016. "The Electric Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Stations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 995-1018.
    70. Michele D. Simoni & Edoardo Marcucci & Valerio Gatta & Christian G. Claudel, 0. "Potential last-mile impacts of crowdshipping services: a simulation-based evaluation," Transportation, Springer, vol. 0, pages 1-22.
    71. Asma Troudi & Sid-Ali Addouche & Sofiene Dellagi & Abderrahman El Mhamedi, 2018. "Sizing of the Drone Delivery Fleet Considering Energy Autonomy," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    72. Ido Orenstein & Tal Raviv & Elad Sadan, 2019. "Flexible parcel delivery to automated parcel lockers: models, solution methods and analysis," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 683-711, December.
    73. Vakulenko, Yulia & Hellström, Daniel & Hjort, Klas, 2018. "What's in the parcel locker? Exploring customer value in e-commerce last mile delivery," Journal of Business Research, Elsevier, vol. 88(C), pages 421-427.
    74. Jeong, Ho Young & Song, Byung Duk & Lee, Seokcheon, 2019. "Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones," International Journal of Production Economics, Elsevier, vol. 214(C), pages 220-233.
    75. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    76. Michael Browne & Julian Allen & Toshinori Nemoto & Danièle Patier & Johan Visser, 2012. "Reducing Social and Environmental Impacts of Urban Freight Transport: A Review of Some Major Cities," Post-Print halshs-01078143, HAL.
    77. Doppstadt, C. & Koberstein, A. & Vigo, D., 2016. "The Hybrid Electric Vehicle – Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 825-842.
    78. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    79. Li, Baoxiang & Krushinsky, Dmitry & Reijers, Hajo A. & Van Woensel, Tom, 2014. "The Share-a-Ride Problem: People and parcels sharing taxis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 31-40.
    80. Luigi Ranieri & Salvatore Digiesi & Bartolomeo Silvestri & Michele Roccotelli, 2018. "A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    81. Alexandra Anderluh & Vera C. Hemmelmayr & Pamela C. Nolz, 2017. "Synchronizing vans and cargo bikes in a city distribution network," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 345-376, June.
    82. Allahviranloo, Mahdieh & Baghestani, Amirhossein, 2019. "A dynamic crowdshipping model and daily travel behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 175-190.
    83. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    84. Wang, Yuan & Zhang, Dongxiang & Liu, Qing & Shen, Fumin & Lee, Loo Hay, 2016. "Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 279-293.
    85. Ehmke, Jan Fabian & Campbell, Ann Melissa, 2014. "Customer acceptance mechanisms for home deliveries in metropolitan areas," European Journal of Operational Research, Elsevier, vol. 233(1), pages 193-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    2. Vasco Silva & António Amaral & Tânia Fontes, 2023. "Sustainable Urban Last-Mile Logistics: A Systematic Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    3. Morandi, Nicola & Leus, Roel & Matuschke, Jannik & Yaman, Hande, 2023. "The traveling salesman problem with drones: The benefits of retraversing the arcs," Other publications TiSEM 09f54df0-875e-40af-a43d-5, Tilburg University, School of Economics and Management.
    4. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    5. Bayliss, Christopher & Bektaş, Tolga & Tjon-Soei-Len, Vernon & Rohner, Remo, 2023. "Designing a multi-modal and variable-echelon delivery system for last-mile logistics," European Journal of Operational Research, Elsevier, vol. 307(2), pages 645-662.
    6. Wang, Haibo & Alidaee, Bahram, 2023. "White-glove service delivery: A quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    7. Michael Dienstknecht & Nils Boysen & Dirk Briskorn, 2022. "The traveling salesman problem with drone resupply," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1045-1086, December.
    8. Ostermeier, Manuel & Heimfarth, Andreas & Hübner, Alexander, 2023. "The multi-vehicle truck-and-robot routing problem for last-mile delivery," European Journal of Operational Research, Elsevier, vol. 310(2), pages 680-697.
    9. Heimfarth, Andreas & Ostermeier, Manuel & Hübner, Alexander, 2022. "A mixed truck and robot delivery approach for the daily supply of customers," European Journal of Operational Research, Elsevier, vol. 303(1), pages 401-421.
    10. Rave, Alexander & Fontaine, Pirmin & Kuhn, Heinrich, 2023. "Drone location and vehicle fleet planning with trucks and aerial drones," European Journal of Operational Research, Elsevier, vol. 308(1), pages 113-130.
    11. Björn Asdecker, 2021. "Building the E-Commerce Supply Chain of the Future: What Influences Consumer Acceptance of Alternative Places of Delivery on the Last-Mile," Logistics, MDPI, vol. 5(4), pages 1-17, December.
    12. Fang Li & Oliver Kunze, 2023. "A Comparative Review of Air Drones (UAVs) and Delivery Bots (SUGVs) for Automated Last Mile Home Delivery," Logistics, MDPI, vol. 7(2), pages 1-32, April.
    13. Dariusz Masłowski & Ewa Kulińska & Gennadij Komada, 2022. "Impact of Alternative Forms of Transport on Urban Freight Congestion," Sustainability, MDPI, vol. 14(17), pages 1-21, September.
    14. Tássia Faria de Assis & Victor Hugo Souza de Abreu & Mariane Gonzalez da Costa & Marcio de Almeida D’Agosto, 2022. "Methodology for Prioritizing Best Practices Applied to the Sustainable Last Mile—The Case of a Brazilian Parcel Delivery Service Company," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    15. Sören Lauenstein & Christoph Schank, 2022. "Design of a Sustainable Last Mile in Urban Logistics—A Systematic Literature Review," Sustainability, MDPI, vol. 14(9), pages 1-14, May.
    16. Klein, Vienna & Steinhardt, Claudius, 2023. "Dynamic demand management and online tour planning for same-day delivery," European Journal of Operational Research, Elsevier, vol. 307(2), pages 860-886.
    17. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    18. Liu, Dan & Kaisar, Evangelos I. & Yang, Yang & Yan, Pengyu, 2022. "Physical Internet-enabled E-grocery delivery Network:A load-dependent two-echelon vehicle routing problem with mixed vehicles," International Journal of Production Economics, Elsevier, vol. 254(C).
    19. Gilles Pache, 2023. "La construction de la grande pyramide de Gizeh aurait-elle pu être menée à son terme sans une exceptionnelle organisation logistique ?," Post-Print hal-04071022, HAL.
    20. Yi Li & Min Liu & Dandan Jiang, 2022. "Application of Unmanned Aerial Vehicles in Logistics: A Literature Review," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    21. Vijoleta Vrhovac & Stana Vasić & Stevan Milisavljević & Branislav Dudić & Peter Štarchoň & Marina Žižakov, 2023. "Measuring E-Commerce User Experience in the Last-Mile Delivery," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    22. Ning Wang & Yong Xu & Adis Puška & Željko Stević & Adel Fahad Alrasheedi, 2023. "Multi-Criteria Selection of Electric Delivery Vehicles Using Fuzzy–Rough Methods," Sustainability, MDPI, vol. 15(21), pages 1-25, November.
    23. Peppel, Marcel & Ringbeck, Jürgen & Spinler, Stefan, 2022. "How will last-mile delivery be shaped in 2040? A Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    24. Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.
    2. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.
    3. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    4. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    5. Marta Viu-Roig & Eduard J. Alvarez-Palau, 2020. "The Impact of E-Commerce-Related Last-Mile Logistics on Cities: A Systematic Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    6. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    7. Boysen, Nils & Emde, Simon & Schwerdfeger, Stefan, 2022. "Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand," European Journal of Operational Research, Elsevier, vol. 296(2), pages 539-556.
    8. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    9. Ghaderi, Hadi & Zhang, Lele & Tsai, Pei-Wei & Woo, Jihoon, 2022. "Crowdsourced last-mile delivery with parcel lockers," International Journal of Production Economics, Elsevier, vol. 251(C).
    10. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    11. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    12. John Olsson & Daniel Hellström & Henrik Pålsson, 2019. "Framework of Last Mile Logistics Research: A Systematic Review of the Literature," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    13. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    14. Marlin Ulmer & Martin Savelsbergh, 2020. "Workforce Scheduling in the Era of Crowdsourced Delivery," Transportation Science, INFORMS, vol. 54(4), pages 1113-1133, July.
    15. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    16. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    17. Waßmuth, Katrin & Köhler, Charlotte & Agatz, Niels & Fleischmann, Moritz, 2023. "Demand management for attended home delivery—A literature review," European Journal of Operational Research, Elsevier, vol. 311(3), pages 801-815.
    18. Haider, Zulqarnain & Hu, Yujie & Charkhgard, Hadi & Himmelgreen, David & Kwon, Changhyun, 2022. "Creating grocery delivery hubs for food deserts at local convenience stores via spatial and temporal consolidation," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    19. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    20. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:43:y:2021:i:1:d:10.1007_s00291-020-00607-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.