IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v128y2019icp175-190.html
   My bibliography  Save this article

A dynamic crowdshipping model and daily travel behavior

Author

Listed:
  • Allahviranloo, Mahdieh
  • Baghestani, Amirhossein

Abstract

Using a dynamic optimization model, we study the transaction of pickup/delivery activities between two groups of individuals: carriers and requesters, in a P2P crowdshipping model. Based on their value of time, requesters set maximum willingness to pay for their parcels to be picked up and delivered and carriers, make an offer depending on the changes that needs to be made to their original itinerary. The proposed model was tested for Los Angeles and Orange Counties, with 27% of successful matches, also demonstrating the impacts of crowdshipping on regional travel behavior and shifts in space-time distribution of the demand.

Suggested Citation

  • Allahviranloo, Mahdieh & Baghestani, Amirhossein, 2019. "A dynamic crowdshipping model and daily travel behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 175-190.
  • Handle: RePEc:eee:transe:v:128:y:2019:i:c:p:175-190
    DOI: 10.1016/j.tre.2019.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554518310603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roth, Alvin E. & Sonmez, Tayfun & Utku Unver, M., 2005. "Pairwise kidney exchange," Journal of Economic Theory, Elsevier, vol. 125(2), pages 151-188, December.
    2. Wenyi Chen & Martijn Mes & Marco Schutten, 2018. "Multi-hop driver-parcel matching problem with time windows," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 517-553, September.
    3. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    4. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    5. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    6. Henke, Tino & Speranza, M. Grazia & Wäscher, Gerhard, 2015. "The multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 246(3), pages 730-743.
    7. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    8. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability," Econometrica, Econometric Society, vol. 73(4), pages 1367-1382, July.
    9. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2016. "Making dynamic ride-sharing work: The impact of driver and rider flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 190-207.
    10. DeSerpa, A C, 1971. "A Theory of the Economics of Time," Economic Journal, Royal Economic Society, vol. 81(324), pages 828-846, December.
    11. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    12. Agatz, N.A.H. & Erera, A. & Savelsbergh, M.W.P. & Wang, X., 2010. "Sustainable Passenger Transportation: Dynamic Ride-Sharing," ERIM Report Series Research in Management ERS-2010-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Mackie, P.J. & Jara-Díaz, S. & Fowkes, A.S., 0. "The value of travel time savings in evaluation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 91-106, April.
    14. Arslan, A.M. & Agatz, N.A.H. & Kroon, L.G. & Zuidwijk, R.A., 2016. "Crowdsourced Delivery: A Dynamic Pickup and Delivery Problem with Ad-hoc Drivers," ERIM Report Series Research in Management ERS-2016-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Gábor Nagy & Niaz A. Wassan & M. Grazia Speranza & Claudia Archetti, 2015. "The Vehicle Routing Problem with Divisible Deliveries and Pickups," Transportation Science, INFORMS, vol. 49(2), pages 271-294, May.
    16. Li, Baoxiang & Krushinsky, Dmitry & Reijers, Hajo A. & Van Woensel, Tom, 2014. "The Share-a-Ride Problem: People and parcels sharing taxis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 31-40.
    17. Sotomayor, Marilda, 2004. "Implementation in the many-to-many matching market," Games and Economic Behavior, Elsevier, vol. 46(1), pages 199-212, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    2. Martin W.P Savelsbergh & Marlin W. Ulmer, 2022. "Challenges and opportunities in crowdsourced delivery planning and operations," 4OR, Springer, vol. 20(1), pages 1-21, March.
    3. Boysen, Nils & Emde, Simon & Schwerdfeger, Stefan, 2022. "Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand," European Journal of Operational Research, Elsevier, vol. 296(2), pages 539-556.
    4. Fessler, Andreas & Cash, Philip & Thorhauge, Mikkel & Haustein, Sonja, 2023. "A public transport based crowdshipping concept: Results of a field test in Denmark," Transport Policy, Elsevier, vol. 134(C), pages 106-118.
    5. Yuwei Yan & Xiaomeng Ma & Yi Song & Ajay Kumar & Ruixian Yang, 2023. "Exploring the interaction and choice behavior of organization and individuals in the crowd logistics," Annals of Operations Research, Springer, vol. 320(2), pages 1021-1040, January.
    6. Ghaderi, Hadi & Zhang, Lele & Tsai, Pei-Wei & Woo, Jihoon, 2022. "Crowdsourced last-mile delivery with parcel lockers," International Journal of Production Economics, Elsevier, vol. 251(C).
    7. Le, Tho V. & Ukkusuri, Satish V. & Xue, Jiawei & Van Woensel, Tom, 2021. "Designing pricing and compensation schemes by integrating matching and routing models for crowd-shipping systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    8. Shen, Hui & Lin, Jane, 2020. "Investigation of crowdshipping delivery trip production with real-world data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    9. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    10. Patricija Bajec & Danijela Tuljak-Suban, 2022. "A Strategic Approach for Promoting Sustainable Crowdshipping in Last-Mile Deliveries," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    11. Fessler, Andreas & Thorhauge, Mikkel & Mabit, Stefan & Haustein, Sonja, 2022. "A public transport-based crowdshipping concept as a sustainable last-mile solution: Assessing user preferences with a stated choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 210-223.
    12. Di Puglia Pugliese, Luigi & Ferone, Daniele & Macrina, Giusy & Festa, Paola & Guerriero, Francesca, 2023. "The crowd-shipping with penalty cost function and uncertain travel times," Omega, Elsevier, vol. 115(C).
    13. Xiao, Haohan & Xu, Min & Wang, Shuaian, 2023. "Crowd-shipping as a Service: Game-based operating strategy design and analysis," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    14. Mancini, Simona & Gansterer, Margaretha, 2022. "Bundle generation for last-mile delivery with occasional drivers," Omega, Elsevier, vol. 108(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    3. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    4. Behrend, Moritz & Meisel, Frank, 2018. "The integration of item-sharing and crowdshipping: Can collaborative consumption be pushed by delivering through the crowd?," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 227-243.
    5. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    6. Zixuan Peng & Wenxuan Shan & Peng Jia & Bin Yu & Yonglei Jiang & Baozhen Yao, 2020. "Stable ride-sharing matching for the commuters with payment design," Transportation, Springer, vol. 47(1), pages 1-21, February.
    7. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    8. Horner, Hannah & Pazour, Jennifer & Mitchell, John E., 2021. "Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    9. Daganzo, Carlos F. & Ouyang, Yanfeng & Yang, Haolin, 2020. "Analysis of ride-sharing with service time and detour guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 130-150.
    10. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    11. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Tao Yang & Weixin Wang, 2022. "Logistics Network Distribution Optimization Based on Vehicle Sharing," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    13. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    14. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    15. Sunghi An & Daisik Nam & R. Jayakrishnan & Soongbong Lee & Michael G. McNally, 2021. "A Study of the Factors Affecting Multimodal Ridesharing with Choice-Based Conjoint Analysis," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    16. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
    17. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    18. Yan, Pengyu & Lee, Chung-Yee & Chu, Chengbin & Chen, Cynthia & Luo, Zhiqin, 2021. "Matching and pricing in ride-sharing: Optimality, stability, and financial sustainability," Omega, Elsevier, vol. 102(C).
    19. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    20. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:128:y:2019:i:c:p:175-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.