IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/93121.html
   My bibliography  Save this paper

Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit

Author

Listed:
  • Stiglic, M.
  • Agatz, N.A.H.
  • Savelsbergh, M.W.P.
  • Gradisar, M.

Abstract

Seamless integration of ride-sharing and public transit may offer fast, reliable, and affordable transfer to and from transit stations in suburban areas thereby enhancing mobility of residents. We investigate the potential benefits of such a system, as well as the ride-matching technology required to support it, by means of an extensive computational study.

Suggested Citation

  • Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:93121
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/93121/ERS-2016-006-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    2. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
    3. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    4. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    5. Lee, Alan & Savelsbergh, Martin, 2015. "Dynamic ridesharing: Is there a role for dedicated drivers?," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 483-497.
    6. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2015. "The Benefits of Meeting Points in Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Cayford, Randall & Yim, Y. B. Youngbin, 2004. "Personalized Demand-Responsive Transit Service," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt29j111ts, Institute of Transportation Studies, UC Berkeley.
    8. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2016. "Making dynamic ride-sharing work: The impact of driver and rider flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 190-207.
    9. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    2. Anastasios Charisis & Christina Iliopoulou & Konstantinos Kepaptsoglou, 2018. "DRT route design for the first/last mile problem: model and application to Athens, Greece," Public Transport, Springer, vol. 10(3), pages 499-527, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    2. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    4. Ruijie Li & Yu (Marco) Nie & Xiaobo Liu, 2020. "Pricing Carpool Rides Based on Schedule Displacement," Transportation Science, INFORMS, vol. 54(4), pages 1134-1152, July.
    5. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    6. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    7. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    8. Zixuan Peng & Wenxuan Shan & Peng Jia & Bin Yu & Yonglei Jiang & Baozhen Yao, 2020. "Stable ride-sharing matching for the commuters with payment design," Transportation, Springer, vol. 47(1), pages 1-21, February.
    9. Wenyi Chen & Martijn Mes & Marco Schutten & Job Quint, 2019. "A Ride-Sharing Problem with Meeting Points and Return Restrictions," Transportation Science, INFORMS, vol. 53(2), pages 401-426, March.
    10. Tao Yang & Weixin Wang, 2022. "Logistics Network Distribution Optimization Based on Vehicle Sharing," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    11. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
    12. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    13. Yan, Pengyu & Lee, Chung-Yee & Chu, Chengbin & Chen, Cynthia & Luo, Zhiqin, 2021. "Matching and pricing in ride-sharing: Optimality, stability, and financial sustainability," Omega, Elsevier, vol. 102(C).
    14. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    15. Ke, Jintao & Yang, Hai & Zheng, Zhengfei, 2020. "On ride-pooling and traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 213-231.
    16. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    17. Qian, Xinwu & Zhang, Wenbo & Ukkusuri, Satish V. & Yang, Chao, 2017. "Optimal assignment and incentive design in the taxi group ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 208-226.
    18. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2016. "Making dynamic ride-sharing work: The impact of driver and rider flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 190-207.
    19. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    20. Omer Faruk Aydin & Ilgin Gokasar & Onur Kalan, 2020. "Matching algorithm for improving ride-sharing by incorporating route splits and social factors," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.

    More about this item

    Keywords

    ride-sharing; public transit; mobility; sustainable transportation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:93121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.