IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v43y2009i10p922-935.html
   My bibliography  Save this article

A methodology to derive the critical demand density for designing and operating feeder transit services

Author

Listed:
  • Quadrifoglio, Luca
  • Li, Xiugang

Abstract

Feeder lines are one of the most often used types of flexible transit services connecting a service area to a major transit network through a transfer point. They often switch operations between a demand responsive and a fixed-route policy. In designing and running such systems, the identification of the condition justifying the operating switch is often hard to properly evaluate. In this paper, we propose an analytical model and solution of the problem to assist decision makers and operators in their choice. By employing continuous approximations, we derive handy but powerful closed-form expressions to estimate the critical demand densities, representing the switching point between the competing operating policies. Based on the results of one-vehicle and two-vehicle operations for various scenarios, in comparison to values generated from simulation, we verify the validity of our analytical modeling approach.

Suggested Citation

  • Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
  • Handle: RePEc:eee:transb:v:43:y:2009:i:10:p:922-935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(09)00050-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quadrifoglio, Luca & Dessouky, Maged M. & Ordonez, Fernando, 2008. "Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthening with logic constraints," European Journal of Operational Research, Elsevier, vol. 185(2), pages 481-494, March.
    2. Hall, Randolph W., 1986. "Discrete models/continuous models," Omega, Elsevier, vol. 14(3), pages 213-220.
    3. Daganzo, Carlos F., 1984. "Checkpoint dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 315-327.
    4. Quadrifoglio, Luca & Dessouky, Maged M. & Ordóñez, Fernando, 2008. "A simulation study of demand responsive transit system design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 718-737, May.
    5. Gérard C. Clarens & V. F. Hurdle, 1975. "An Operating Strategy for a Commuter Bus System," Transportation Science, INFORMS, vol. 9(1), pages 1-20, February.
    6. Wardman, Mark, 2004. "Public transport values of time," Transport Policy, Elsevier, vol. 11(4), pages 363-377, October.
    7. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    8. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    9. S. C. Wirasinghe & Nadia S. Ghoneim, 1981. "Spacing of Bus-Stops for Many to Many Travel Demand," Transportation Science, INFORMS, vol. 15(3), pages 210-221, August.
    10. Ann Melissa Campbell & Martin Savelsbergh, 2004. "Efficient Insertion Heuristics for Vehicle Routing and Scheduling Problems," Transportation Science, INFORMS, vol. 38(3), pages 369-378, August.
    11. Cayford, Randall & Yim, Y. B. Youngbin, 2004. "Personalized Demand-Responsive Transit Service," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt29j111ts, Institute of Transportation Studies, UC Berkeley.
    12. Aldaihani, Majid M. & Quadrifoglio, Luca & Dessouky, Maged M. & Hall, Randolph, 2004. "Network design for a grid hybrid transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 511-530, August.
    13. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra, Shailesh & Quadrifoglio, Luca, 2013. "A model for estimating the optimal cycle length of demand responsive feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 1-16.
    2. Qiu, Feng & Shen, Jinxing & Zhang, Xuechi & An, Chengchuan, 2015. "Demi-flexible operating policies to promote the performance of public transit in low-demand areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 215-230.
    3. Zhao, Jiamin & Dessouky, Maged, 2008. "Service capacity design problems for mobility allowance shuttle transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 135-146, February.
    4. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    5. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    6. G. Dikas & I. Minis, 2018. "Scheduled Paratransit Transport Enhanced by Accessible Taxis," Transportation Science, INFORMS, vol. 52(5), pages 1122-1140, October.
    7. Chen, Peng Will & Nie, Yu Marco, 2017. "Analysis of an idealized system of demand adaptive paired-line hybrid transit," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 38-54.
    8. Sangveraphunsiri, Tawit & Cassidy, Michael J. & Daganzo, Carlos F., 2022. "Jitney-lite: a flexible-route feeder service for developing countries," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 1-13.
    9. Diana, Marco & Dessouky, Maged M. & Xia, Nan, 2006. "A model for the fleet sizing of demand responsive transportation services with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 651-666, September.
    10. Quadrifoglio, Luca & Dessouky, Maged M. & Ordonez, Fernando, 2008. "Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthening with logic constraints," European Journal of Operational Research, Elsevier, vol. 185(2), pages 481-494, March.
    11. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    12. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    13. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    14. Ellegood, William A. & Campbell, James F. & North, Jeremy, 2015. "Continuous approximation models for mixed load school bus routing," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 182-198.
    15. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    16. Babak Mehran & Yongzhe Yang & Sushreeta Mishra, 2020. "Analytical models for comparing operational costs of regular bus and semi-flexible transit services," Public Transport, Springer, vol. 12(1), pages 147-169, March.
    17. Luo, Sida & Nie, Yu (Marco), 2020. "On the role of route choice modeling in transit sketchy design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 223-243.
    18. Rick Grahn & Sean Qian & Chris Hendrickson, 2023. "Optimizing first- and last-mile public transit services leveraging transportation network companies (TNC)," Transportation, Springer, vol. 50(5), pages 2049-2076, October.
    19. Wang, Yineng & Lin, Xi & He, Fang & Li, Meng, 2022. "Designing transit-oriented multi-modal transportation systems considering travelers’ choices," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 292-327.
    20. Giovanni Calabro' & Andrea Araldo & Simon Oh & Ravi Seshadri & Giuseppe Inturri & Moshe Ben-Akiva, 2021. "Adaptive Transit Design: Optimizing Fixed and Demand Responsive Multi-Modal Transportation via Continuous Approximation," Papers 2112.14748, arXiv.org, revised Jan 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:43:y:2009:i:10:p:922-935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.