IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v27y2022i6d10.1007_s11027-022-10015-8.html
   My bibliography  Save this article

Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities

Author

Listed:
  • Miaomiao Tao

    (University of Malaya)

  • Pierre Failler

    (University of Portsmouth)

  • Lim Thye Goh

    (University of Malaya)

  • Wee Yeap Lau

    (University of Malaya)

  • Hanghang Dong

    (University of Malaya)

  • Liang Xie

    (Beijing University of Technology)

Abstract

The establishment of a carbon trading market is crucial for China to fulfil its carbon emission commitments through a market mechanism. As a market-based environmental regulation instrument, Emission Trading Scheme (ETS) has been attracted increasing attention worldwide, while the effect of ETS on low-carbon economy efficiency (LEE) has not been fully investigated, thus inspiring us to fulfil this research gap. Using the panel data of China’s 283 selected prefecture-level cities during 2006–2017, we adopted the difference-in-differences (DID) model, propensity-score-matched DID (PSM-DID) model, and the spatial DID model to model the direct and indirect effects of China’s ETS on LEE at national, regional, and local (resource-based cities with different development stages) levels. The robust results yield that ETS directly and significantly improved China’s LEE at the national level. Still, the LEE in ETS pilot region will increase by approximately 4.3% compared with untreated cities, while the spatial heterogeneity of this effect is captured at regional and local levels, which emphasises the necessity of a completed market construction and classified supervision. The results of this paper provide important insights for strengthening the policy design of a nationwide carbon market, and a reference point for other regions and countries, especially developing countries, in refining a carbon trading market.

Suggested Citation

  • Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
  • Handle: RePEc:spr:masfgc:v:27:y:2022:i:6:d:10.1007_s11027-022-10015-8
    DOI: 10.1007/s11027-022-10015-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-022-10015-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-022-10015-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Say, Nuriye Peker & Yucel, Muzaffer, 2006. "Energy consumption and CO2 emissions in Turkey: Empirical analysis and future projection based on an economic growth," Energy Policy, Elsevier, vol. 34(18), pages 3870-3876, December.
    2. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "Analysis of green total-factor productivity in China's regional metal industry: A meta-frontier approach," Resources Policy, Elsevier, vol. 58(C), pages 219-229.
    3. Miao, Zhuang & Chen, Xiaodong & Baležentis, Tomas, 2021. "Improving energy use and mitigating pollutant emissions across “Three Regions and Ten Urban Agglomerations”: A city-level productivity growth decomposition," Applied Energy, Elsevier, vol. 283(C).
    4. Montgomery, W. David, 1972. "Markets in licenses and efficient pollution control programs," Journal of Economic Theory, Elsevier, vol. 5(3), pages 395-418, December.
    5. Jacobson, Louis S & LaLonde, Robert J & Sullivan, Daniel G, 1993. "Earnings Losses of Displaced Workers," American Economic Review, American Economic Association, vol. 83(4), pages 685-709, September.
    6. Li, Bo & Dewan, Hasnat, 2017. "Efficiency differences among China's resource-based cities and their determinants," Resources Policy, Elsevier, vol. 51(C), pages 31-38.
    7. Lin, Boqiang & Zhu, Junpeng, 2019. "Fiscal spending and green economic growth: Evidence from China," Energy Economics, Elsevier, vol. 83(C), pages 264-271.
    8. Dong-Hyeon Kim & Shu-Chin Lin, 2017. "Natural Resources and Economic Development: New Panel Evidence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 363-391, February.
    9. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    10. Louis S. Jacobson & Robert J. LaLonde & Daniel G. Sullivan, 1993. "Long-term earnings losses of high-seniority displaced workers," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 17(Nov), pages 2-20.
    11. Thorsten Beck & Ross Levine & Alexey Levkov, 2010. "Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States," Journal of Finance, American Finance Association, vol. 65(5), pages 1637-1667, October.
    12. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    13. Philippe Aghion & Peter Howitt, 1994. "Growth and Unemployment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(3), pages 477-494.
    14. Richard Schmalensee & Robert N. Stavins, 2013. "The SO 2 Allowance Trading System: The Ironic History of a Grand Policy Experiment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 103-122, Winter.
    15. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    16. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    17. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
    18. Li, Huijuan & Long, Ruyin & Chen, Hong, 2013. "Economic transition policies in Chinese resource-based cities: An overview of government efforts," Energy Policy, Elsevier, vol. 55(C), pages 251-260.
    19. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
    20. Zhu, Bangzhu & Zhang, Mengfan & Huang, Liqing & Wang, Ping & Su, Bin & Wei, Yi-Ming, 2020. "Exploring the effect of carbon trading mechanism on China's green development efficiency: A novel integrated approach," Energy Economics, Elsevier, vol. 85(C).
    21. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    22. Vandenberghe, V. & Robin, S., 2004. "Evaluating the effectiveness of private education across countries: a comparison of methods," Labour Economics, Elsevier, vol. 11(4), pages 487-506, August.
    23. Gu, Yan & Ho, Kung-Cheng & Yan, Cheng & Gozgor, Giray, 2021. "Public environmental concern, CEO turnover, and green investment: Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 100(C).
    24. Zhang, Shengling & Wang, Yao & Hao, Yu & Liu, Zhiwei, 2021. "Shooting two hawks with one arrow: Could China's emission trading scheme promote green development efficiency and regional carbon equality?," Energy Economics, Elsevier, vol. 101(C).
    25. Cheng, Beibei & Dai, Hancheng & Wang, Peng & Xie, Yang & Chen, Li & Zhao, Daiqing & Masui, Toshihiko, 2016. "Impacts of low-carbon power policy on carbon mitigation in Guangdong Province, China," Energy Policy, Elsevier, vol. 88(C), pages 515-527.
    26. Joachim Schleich & Regina Betz, 2004. "EU emissions trading and transaction costs for small and medium sized companies," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 39(3), pages 121-123, May.
    27. Eugénie Joltreau & Katrin Sommerfeld, 2019. "Why does emissions trading under the EU Emissions Trading System (ETS) not affect firms’ competitiveness? Empirical findings from the literature," Climate Policy, Taylor & Francis Journals, vol. 19(4), pages 453-471, April.
    28. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    29. SHAO Shuai & QI Zhongying, 2009. "Energy exploitation and economic growth in Western China: An empirical analysis based on the resource curse hypothesis," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 4(1), pages 125-152, March.
    30. Chen, Bin & Jin, Yingmei, 2020. "Adjusting productivity measures for CO2 emissions control: Evidence from the provincial thermal power sector in China," Energy Economics, Elsevier, vol. 87(C).
    31. Yu, Song-min & Fan, Ying & Zhu, Lei & Eichhammer, Wolfgang, 2020. "Modeling the emission trading scheme from an agent-based perspective: System dynamics emerging from firms’ coordination among abatement options," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1113-1128.
    32. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    33. Zhao, Yibing & Wang, Can & Sun, Yuwei & Liu, Xianbing, 2018. "Factors influencing companies' willingness to pay for carbon emissions: Emission trading schemes in China," Energy Economics, Elsevier, vol. 75(C), pages 357-367.
    34. Chagas, André L.S. & Azzoni, Carlos R. & Almeida, Alexandre N., 2016. "A spatial difference-in-differences analysis of the impact of sugarcane production on respiratory diseases," Regional Science and Urban Economics, Elsevier, vol. 59(C), pages 24-36.
    35. Shaofu Du & Yujiao Zhu & Yangguang Zhu & Wenzhi Tang, 2020. "Allocation policy considering firm’s time-varying emission reduction in a cap-and-trade system," Annals of Operations Research, Springer, vol. 290(1), pages 543-565, July.
    36. Dong, Huijuan & Geng, Yong & Xi, Fengming & Fujita, Tsuyoshi, 2013. "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach," Energy Policy, Elsevier, vol. 57(C), pages 298-307.
    37. Friedrichs, Jörg & Inderwildi, Oliver R., 2013. "The carbon curse: Are fuel rich countries doomed to high CO2 intensities?," Energy Policy, Elsevier, vol. 62(C), pages 1356-1365.
    38. Shao, Shuai & Zhang, Yan & Tian, Zhihua & Li, Ding & Yang, Lili, 2020. "The regional Dutch disease effect within China: A spatial econometric investigation," Energy Economics, Elsevier, vol. 88(C).
    39. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    40. Wang, Lingling & Watanabe, Tsunemi, 2019. "Effects of environmental policy on public risk perceptions of haze in Tianjin City: A difference-in-differences analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 199-212.
    41. Diao, Mi & Leonard, Delon & Sing, Tien Foo, 2017. "Spatial-difference-in-differences models for impact of new mass rapid transit line on private housing values," Regional Science and Urban Economics, Elsevier, vol. 67(C), pages 64-77.
    42. Shen, Lixin & Muduli, Kamalakanta & Barve, Akhilesh, 2015. "Developing a sustainable development framework in the context of mining industries: AHP approach," Resources Policy, Elsevier, vol. 46(P1), pages 15-26.
    43. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    44. Jon Skjærseth & Jørgen Wettestad, 2008. "Implementing EU emissions trading: success or failure?," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 8(3), pages 275-290, September.
    45. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.
    46. Yanhong Feng & Shuanglian Chen & Pierre Failler, 2020. "Productivity Effect Evaluation on Market-Type Environmental Regulation: A Case Study of SO 2 Emission Trading Pilot in China," IJERPH, MDPI, vol. 17(21), pages 1-27, October.
    47. Zhu, Xuzhen & Tian, Hui & Zhang, Tianqiao, 2018. "Symmetrical information filtering via punishing superfluous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Ding & Fangcheng Sun, 2023. "Impact of River Chief System on Green Technology Innovation: Empirical Evidence from the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    2. Chuang Li & Qingqing Liu & Qing Li & Hailing Wang, 2022. "Does Innovative Industrial Agglomeration Promote Environmentally-Friendly Development? Evidence from Chinese Prefecture-Level Cities," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    3. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    4. Li, Qiangyi & Zeng, Fu'e & Liu, Shaohui & Yang, Mian & Xu, Fei, 2021. "The effects of China's sustainable development policy for resource-based cities on local industrial transformation," Resources Policy, Elsevier, vol. 71(C).
    5. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    6. Youshuai Sun & Demi Zhu & Zhenyu Zhang & Na Yan, 2022. "Does Fiscal Stress Improve the Environmental Efficiency? Perspective Based on the Urban Horizontal Fiscal Imbalance," IJERPH, MDPI, vol. 19(10), pages 1-23, May.
    7. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    8. Yanhong Feng & Shuanglian Chen & Pierre Failler, 2020. "Productivity Effect Evaluation on Market-Type Environmental Regulation: A Case Study of SO 2 Emission Trading Pilot in China," IJERPH, MDPI, vol. 17(21), pages 1-27, October.
    9. Hu, Yucai & Li, Ranran & Du, Lei & Ren, Shenggang & Chevallier, Julien, 2022. "Could SO2 and CO2 emissions trading schemes achieve co-benefits of emissions reduction?," Energy Policy, Elsevier, vol. 170(C).
    10. Li, Changsheng & Qi, Yaping & Liu, Shaohui & Wang, Xu, 2022. "Do carbon ETS pilots improve cities' green total factor productivity? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 108(C).
    11. Zhang, Shengling & Wang, Yao & Hao, Yu & Liu, Zhiwei, 2021. "Shooting two hawks with one arrow: Could China's emission trading scheme promote green development efficiency and regional carbon equality?," Energy Economics, Elsevier, vol. 101(C).
    12. Kuang, Yunming & Lin, Boqiang, 2022. "Natural gas resource utilization, environmental policy and green economic development: Empirical evidence from China," Resources Policy, Elsevier, vol. 79(C).
    13. Shen, Jun & Tang, Pengcheng & Zeng, Hao & Cheng, Jinhua & Liu, Xiuli, 2023. "Does emission trading system reduce mining cities’ pollution emissions? A quasi-natural experiment based on Chinese prefecture-level cities," Resources Policy, Elsevier, vol. 81(C).
    14. Zhu, Chen & Lee, Chien-Chiang, 2022. "The effects of low-carbon pilot policy on technological innovation: Evidence from prefecture-level data in China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    15. Ying, Zhou & Xin-gang, Zhao, 2021. "The impact of Renewable Portfolio Standards on carbon emission trading under the background of China’s electricity marketization reform," Energy, Elsevier, vol. 226(C).
    16. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    17. Guang Chen & Akira Hibiki, 2022. "Can the Carbon Emission Trading Scheme Influence Industrial Green Production in China?," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    18. Laiqun Jin & Xiuyan Liu & Sam Hak Kan Tang, 2021. "High-Technology Zones, Misallocation of Resources among Cities and Aggregate Productivity: Evidence from China," Economics Discussion / Working Papers 21-11, The University of Western Australia, Department of Economics.
    19. Gabrielle Wills, 2016. "Principal leadership changes in South Africa: Investigating their consequences for school performance," Working Papers 01/2016, Stellenbosch University, Department of Economics.
    20. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:6:d:10.1007_s11027-022-10015-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.