IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v62y2019icp651-663.html
   My bibliography  Save this article

How government regulation impacts on energy and CO2 emissions performance in China's mining industry

Author

Listed:
  • Ma, Ding
  • Fei, Rilong
  • Yu, Yongsheng

Abstract

Mining industry, well known as the supply foundation of the nation's entire industrial production, is critical in China's endeavor in resource conservation and emission reduction. The spatial and temporal evolution characteristics of the unified inputs-outputs efficiency are firstly studied based on non-radial directional distance function and Malmquist index decomposition. On this basis, panel regression models are built to identify drivers of the measured efficiency evolution in China's mining sector. Our empirical results reveal that: (i) unified inputs-outputs efficiency in China's mining sector exhibits an essentially descending trend on the whole and the regional disparity is not as pronounced as other industries; (ii) state ownership stake exerts a negative effect, whereas private ownership stake exerts a positive influence on the unified input-output efficiency; (iii) government regulation did not impel mining industry toward a more efficient mode of operating but hindered efficiency enhancement, and this is especially distinct in private-owned enterprises; (iv) regional economic development and R&D could be conducive to the improvement of unified input-output efficiency while energy price did not effectively motivate input conservation. The results offer some clues for policy-makers of the mining industry, for improving its sustainable and efficient industrial operating.

Suggested Citation

  • Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
  • Handle: RePEc:eee:jrpoli:v:62:y:2019:i:c:p:651-663
    DOI: 10.1016/j.resourpol.2018.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142071730497X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2018.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency: Some clarifications," European Journal of Operational Research, Elsevier, vol. 206(3), pages 702-702, November.
    2. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    3. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    4. Ramli, Noor Asiah & Munisamy, Susila, 2015. "Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure," Economic Modelling, Elsevier, vol. 47(C), pages 219-227.
    5. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
    6. M. Diaz & Rosario Sanchez, 2008. "Firm size and productivity in Spain: a stochastic frontier analysis," Small Business Economics, Springer, vol. 30(3), pages 315-323, March.
    7. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    8. Hering, Laura & Poncet, Sandra, 2014. "Environmental policy and exports: Evidence from Chinese cities," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 296-318.
    9. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    10. Sun, Sizhong & Anwar, Sajid, 2015. "R&D status and the performance of domestic firms in China's coal mining industry," Energy Policy, Elsevier, vol. 79(C), pages 99-103.
    11. Boycko, Maxim & Shleifer, Andrei & Vishny, Robert W, 1996. "A Theory of Privatisation," Economic Journal, Royal Economic Society, vol. 106(435), pages 309-319, March.
    12. Ma, Yiqun, 2015. "Uncertainty and investment: Evidence from the Australian mining industry," Resources Policy, Elsevier, vol. 46(P2), pages 191-201.
    13. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    14. Li, Mingquan & Wang, Qi, 2014. "International environmental efficiency differences and their determinants," Energy, Elsevier, vol. 78(C), pages 411-420.
    15. Gray, Wayne B, 1987. "The Cost of Regulation: OSHA, EPA and the Productivity Slowdown," American Economic Review, American Economic Association, vol. 77(5), pages 998-1006, December.
    16. Fei, Rilong & Lin, Boqiang, 2017. "The integrated efficiency of inputs–outputs and energy – CO2 emissions performance of China's agricultural sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 668-676.
    17. Fan, Songmei & Yan, Jingjing & Sha, Jinghua, 2017. "Innovation and economic growth in the mining industry: Evidence from China's listed companies," Resources Policy, Elsevier, vol. 54(C), pages 25-42.
    18. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    19. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    20. Song, Zongyun & Niu, Dongxiao & Xiao, Xinli, 2017. "Focus on the current competitiveness of coal industry in China: Has the depression time gone?," Resources Policy, Elsevier, vol. 51(C), pages 172-182.
    21. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    22. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    23. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    24. Moon, Hana & Min, Daiki, 2017. "Assessing energy efficiency and the related policy implications for energy-intensive firms in Korea: DEA approach," Energy, Elsevier, vol. 133(C), pages 23-34.
    25. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    26. Xu, Hangtian & Nakajima, Kentaro, 2016. "Did China's coal mine regulation positively affect economic growth?," Resources Policy, Elsevier, vol. 50(C), pages 160-168.
    27. Peng, Lihong & Zhang, Yiting & Wang, Yejun & Zeng, Xiaoling & Peng, Najun & Yu, Ang, 2015. "Energy efficiency and influencing factor analysis in the overall Chinese textile industry," Energy, Elsevier, vol. 93(P1), pages 1222-1229.
    28. Shen, Lixin & Muduli, Kamalakanta & Barve, Akhilesh, 2015. "Developing a sustainable development framework in the context of mining industries: AHP approach," Resources Policy, Elsevier, vol. 46(P1), pages 15-26.
    29. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    30. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    31. Sanz-Díaz, María Teresa & Velasco-Morente, Francisco & Yñiguez, Rocío & Díaz-Calleja, Emilio, 2017. "An analysis of Spain's global and environmental efficiency from a European Union perspective," Energy Policy, Elsevier, vol. 104(C), pages 183-193.
    32. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    33. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    34. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    35. Chen, Weidong & Geng, Wenxin, 2017. "Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input," Energy, Elsevier, vol. 120(C), pages 283-292.
    36. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    37. Song, Malin & Song, Yaqing & An, Qingxian & Yu, Huayin, 2013. "Review of environmental efficiency and its influencing factors in China: 1998–2009," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 8-14.
    38. Fare, Rolf & Grosskopf, Shawna & Logan, James, 1983. "The relative efficiency of Illinois electric utilities," Resources and Energy, Elsevier, vol. 5(4), pages 349-367, December.
    39. Guo, Xiao-Dan & Zhu, Lei & Fan, Ying & Xie, Bai-Chen, 2011. "Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA," Energy Policy, Elsevier, vol. 39(5), pages 2352-2360, May.
    40. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yixiang & Xiong, Yali & Li, Feng & Cheng, Jinhua & Yue, Xiaochen, 2020. "Environmental regulation, capital output and energy efficiency in China: An empirical research based on integrated energy prices," Energy Policy, Elsevier, vol. 146(C).
    2. Fan, Wei & Yan, Ling & Chen, Boyang & Ding, Wangwang & Wang, Ping, 2022. "Environmental governance effects of local environmental protection expenditure in China," Resources Policy, Elsevier, vol. 77(C).
    3. Mohammed Atris, Amani, 2020. "Assessment of oil refinery performance: Application of data envelopment analysis-discriminant analysis," Resources Policy, Elsevier, vol. 65(C).
    4. Singh, Rajesh Kumar & Kumar, Anil & Garza-Reyes, Jose Arturo & de Sá, Marcelo M., 2020. "Managing operations for circular economy in the mining sector: An analysis of barriers intensity," Resources Policy, Elsevier, vol. 69(C).
    5. Li, Ying & Cen, Hongyi & Lin, Tai-Yu & Lin, Yi-Nuo & Chiu, Yung-Ho, 2022. "Sustainable coal mine and coal land development in China," Resources Policy, Elsevier, vol. 79(C).
    6. Peng, Xinyuan & Tang, Pengcheng & Yang, Shuwang & Fu, Shuke, 2020. "How should mining firms invest in the multidimensions of corporate social responsibility? Evidence from China," Resources Policy, Elsevier, vol. 65(C).
    7. Jiao, Wenting & Zhang, Xiaosen & Li, Changhong & Guo, Jiaqi, 2021. "Sustainable transition of mining cities in China: Literature review and policy analysis," Resources Policy, Elsevier, vol. 74(C).
    8. Shen, Jun & Tang, Pengcheng & Zeng, Hao & Cheng, Jinhua & Liu, Xiuli, 2023. "Does emission trading system reduce mining cities’ pollution emissions? A quasi-natural experiment based on Chinese prefecture-level cities," Resources Policy, Elsevier, vol. 81(C).
    9. Xiangqian Wang & Shudong Wang & Yongqiu Xia, 2022. "Evaluation and Dynamic Evolution of the Total Factor Environmental Efficiency in China’s Mining Industry," Energies, MDPI, vol. 15(3), pages 1-19, February.
    10. Linan Gao & Xiaofei Liu & Xinyi Mei & Guangwei Rui & Jingcheng Li, 2022. "Research on the Spatial-Temporal Distribution Characteristics and Influencing Factors of Carbon Emission Efficiency in China’s Metal Smelting Industry—Based on the Three-Stage DEA Method," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    11. Zhu, Runqing & Lin, Boqiang, 2021. "Energy and carbon performance improvement in China's mining Industry:Evidence from the 11th and 12th five-year plan," Energy Policy, Elsevier, vol. 154(C).
    12. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Environmental Sustainability within Attaining Sustainable Development Goals: The Role of Digitalization and the Transport Sector," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    13. Sarfraz, Muddassar & Iqbal, Kashif & Wang, Yichu & Bhutta, Muhammad Shoaib & Jaffri, Zain ul Abidin, 2023. "Role of agricultural resource sector in environmental emissions and its explicit relationship with sustainable development: Evidence from agri-food system in China," Resources Policy, Elsevier, vol. 80(C).
    14. Zhou, Wei & Chen, Jin, 2021. "Is R&D helpful for China’s energy technology and engineering industry to respond to external uncertainties?," Energy, Elsevier, vol. 226(C).
    15. Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
    16. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    17. Zhang, Yue-Jun & Liu, Jing-Yue & Su, Bin, 2020. "Carbon congestion effects in China's industry: Evidence from provincial and sectoral levels," Energy Economics, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    2. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    3. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    4. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    5. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    6. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    7. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    8. Song, Malin & Wang, Jianlin, 2018. "Environmental efficiency evaluation of thermal power generation in China based on a slack-based endogenous directional distance function model," Energy, Elsevier, vol. 161(C), pages 325-336.
    9. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    10. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
    11. Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    12. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    13. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    14. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    15. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    16. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    17. Yanni Yu & Yongrok Choi, 2015. "Measuring Environmental Performance Under Regional Heterogeneity in China: A Metafrontier Efficiency Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 375-388, October.
    18. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    19. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    20. Kapelko, Magdalena & Oude Lansink, Alfons, 2017. "Dynamic multi-directional inefficiency analysis of European dairy manufacturing firms," European Journal of Operational Research, Elsevier, vol. 257(1), pages 338-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:62:y:2019:i:c:p:651-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.