IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2303-d156064.html
   My bibliography  Save this article

Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China

Author

Listed:
  • Zuoren Sun

    (Business School, Shandong University, Weihai, No. 180 West Culture Road, Weihai 264209, China)

  • Chao An

    (Business School, Shandong University, Weihai, No. 180 West Culture Road, Weihai 264209, China)

  • Huachen Sun

    (Shandong Academy of Macroeconomic Research, No. 9 South Qianfoshan Road, Jinan 250014, China)

Abstract

This paper proposes a new non-radial biennial Luenberger energy and environmental performance index (EEPI) to measure the energy and environmental performance (EEP) change in various Chinese cities. The sources of EEP change, in terms of technical efficiency change and technological change, are examined by Luenberger EEPI. The contributions from specific undesirable outputs and energy inputs to the EEP change are identified by means of the non-radial efficiency measure. The proposed approach is applied to evaluate the EEP of the industrial sector in 283 cities in China over 2010–2014. Factors influencing the emission abatement potential are investigated by employing geographically weighted regression (GWR) model. We find that (1) changes in EEP can be attributed to technological progress but that technological progress slows down across the study period; (2) the soot emission performance experiences a downtrend among four specific sub-performances (i.e., energy, wastewater, SO 2 and soot performances) in line with the truth that severe haze happened frequently in China; (3) the best performers begin to move from the coastal to inland cities with the less resource consumption and higher ecological quality; (4) cities with the strongest positive effect in regards to pollution intensity on emission abatement potential are located in the areas around the Bohai Gulf, where air pollution is particularly severe.

Suggested Citation

  • Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2303-:d:156064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    2. Ke Wang, 2016. "Evaluation and Decomposition of Energy and Environmental Productivity Change Using DEA," International Series in Operations Research & Management Science, in: Shiuh-Nan Hwang & Hsuan-Shih Lee & Joe Zhu (ed.), Handbook of Operations Analytics Using Data Envelopment Analysis, chapter 0, pages 267-297, Springer.
    3. Honma, Satoshi & Hu, Jin-Li, 2009. "Total-factor energy productivity growth of regions in Japan," Energy Policy, Elsevier, vol. 37(10), pages 3941-3950, October.
    4. Vlontzos, George & Niavis, Spyros & Manos, Basil, 2014. "A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 91-96.
    5. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
    6. Quah, Danny, 1997. "Empirics for growth and distribution," LSE Research Online Documents on Economics 2138, London School of Economics and Political Science, LSE Library.
    7. Kortelainen, Mika, 2008. "Dynamic environmental performance analysis: A Malmquist index approach," Ecological Economics, Elsevier, vol. 64(4), pages 701-715, February.
    8. Pastor, Jesús T. & Asmild, Mette & Lovell, C.A. Knox, 2011. "The biennial Malmquist productivity change index," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 10-15, March.
    9. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    10. S. Managi, 2003. "Luenberger and Malmquist productivity indices in Japan, 1955-1995," Applied Economics Letters, Taylor & Francis Journals, vol. 10(9), pages 581-584.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Rashidi, Kamran & Farzipoor Saen, Reza, 2015. "Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement," Energy Economics, Elsevier, vol. 50(C), pages 18-26.
    13. Zhou, D.Q. & Wu, F. & Zhou, X. & Zhou, P., 2016. "Output-specific energy efficiency assessment: A data envelopment analysis approach," Applied Energy, Elsevier, vol. 177(C), pages 117-126.
    14. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
    15. Molinos-Senante, María & Maziotis, Alexandros & Sala-Garrido, Ramón, 2014. "The Luenberger productivity indicator in the water industry: An empirical analysis for England and Wales," Utilities Policy, Elsevier, vol. 30(C), pages 18-28.
    16. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    17. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    18. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    19. Quah, Danny T., 1996. "Empirics for economic growth and convergence," European Economic Review, Elsevier, vol. 40(6), pages 1353-1375, June.
    20. Özkara, Yücel & Atak, Mehmet, 2015. "Regional total-factor energy efficiency and electricity saving potential of manufacturing industry in Turkey," Energy, Elsevier, vol. 93(P1), pages 495-510.
    21. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    22. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    23. Quah, Danny, 1993. "Empirical cross-section dynamics in economic growth," European Economic Review, Elsevier, vol. 37(2-3), pages 426-434, April.
    24. Ji Guo & Dongdong Zhu & Xianhua Wu & Yaozhen Yan, 2017. "Study on Environment Performance Evaluation and Regional Differences of Strictly-Environmental-Monitored Cities in China," Sustainability, MDPI, vol. 9(12), pages 1-20, December.
    25. Quah, Danny, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," CEPR Discussion Papers 1586, C.E.P.R. Discussion Papers.
    26. Peng, Lihong & Zhang, Yiting & Wang, Yejun & Zeng, Xiaoling & Peng, Najun & Yu, Ang, 2015. "Energy efficiency and influencing factor analysis in the overall Chinese textile industry," Energy, Elsevier, vol. 93(P1), pages 1222-1229.
    27. Andrés J. Picazo-Tadeo & Juana Castillo & Mercedes Beltrán-Esteve, 2013. "A dynamic approach to measuring ecological-economic performance with directional distance functions: greenhouse gas emissions in the European Union," Working Papers 1304, Department of Applied Economics II, Universidad de Valencia.
    28. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    29. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    30. Mahlberg, Bernhard & Sahoo, Biresh K., 2011. "Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application," International Journal of Production Economics, Elsevier, vol. 131(2), pages 721-726, June.
    31. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    32. Harris, Paul G. & Chow, Alice S.Y. & Symons, Jonathan, 2012. "Greenhouse gas emissions from cities and regions: International implications revealed by Hong Kong," Energy Policy, Elsevier, vol. 44(C), pages 416-424.
    33. Ke Wang & Yujiao Xian & Yi-Ming Wei & Zhimin Huang, 2016. "Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function," CEEP-BIT Working Papers 91, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    34. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    35. Song, Malin & Wang, Shuhong & Yu, Huayin & Yang, Li & Wu, Jie, 2011. "To reduce energy consumption and to maintain rapid economic growth: Analysis of the condition in China based on expended IPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5129-5134.
    36. Pérez, Karen & González-Araya, Marcela C. & Iriarte, Alfredo, 2017. "Energy and GHG emission efficiency in the Chilean manufacturing industry: Sectoral and regional analysis by DEA and Malmquist indexes," Energy Economics, Elsevier, vol. 66(C), pages 290-302.
    37. Danny Quah, 1997. "Empirics for Growth and Distribution," CEP Discussion Papers dp0324, Centre for Economic Performance, LSE.
    38. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    39. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    40. Chambers, Robert G., 1995. "Benefit and Distance Functions," Working Papers 197820, University of Maryland, Department of Agricultural and Resource Economics.
    41. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    42. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    43. Quah, Danny T, 1997. "Empirics for Growth and Distribution: Stratification, Polarization, and Convergence Clubs," Journal of Economic Growth, Springer, vol. 2(1), pages 27-59, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimír Baláž & Eduard Nežinský & Tomáš Jeck & Richard Filčák, 2020. "Energy and Emission Efficiency of the Slovak Regions," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    2. Shi, Xiaohui & Chu, Junhui & Zhao, Changyi, 2021. "Exploring the spatiotemporal evolution of energy intensity in China by visual technology of the GIS," Energy, Elsevier, vol. 228(C).
    3. Xueyan Liu & Xiaolong Gao, 2018. "A New Study on Air Quality Standards: Air Quality Measurement and Evaluation for Jiangsu Province Based on Six Major Air Pollutants," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    4. Huaide Wen & Jun Dai, 2021. "The Change of Sources of Growth and Sustainable Development in China: Based on the Extended EKC Explanation," Sustainability, MDPI, vol. 13(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    3. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    4. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    5. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    6. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    7. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    8. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    9. Kounetas, Konstantinos E. & Polemis, Michael L. & Tzeremes, Nickolaos G., 2021. "Measurement of eco-efficiency and convergence: Evidence from a non-parametric frontier analysis," European Journal of Operational Research, Elsevier, vol. 291(1), pages 365-378.
    10. Kounetas, Kostas & Zervopoulos, Panagiotis, 2017. "Annex I and non-Annex I countries’productive performance revisited using a generalized directional distance function under a metafrontier framework: Is there any convergence-divergence pattern for tec," MPRA Paper 80904, University Library of Munich, Germany.
    11. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    12. Kounetas, Konstantinos & Polemis, Michael & Tzeremes, Nickolaos, 2019. "An alternative probabilistic frontier analysis to the measurement of eco-efficiency," MPRA Paper 93686, University Library of Munich, Germany.
    13. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    14. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    15. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    16. Wang, Ke & Lu, Bin & Wei, Yi-Ming, 2013. "China’s regional energy and environmental efficiency: A Range-Adjusted Measure based analysis," Applied Energy, Elsevier, vol. 112(C), pages 1403-1415.
    17. Yang Li & An-Chi Liu & Shu-Mei Wang & Yiting Zhan & Jingran Chen & Hsiao-Fen Hsiao, 2022. "A Study of Total-Factor Energy Efficiency for Regional Sustainable Development in China: An Application of Bootstrapped DEA and Clustering Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.
    18. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    19. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
    20. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2303-:d:156064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.