IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v80y2023ics0301420722006341.html
   My bibliography  Save this article

Role of agricultural resource sector in environmental emissions and its explicit relationship with sustainable development: Evidence from agri-food system in China

Author

Listed:
  • Sarfraz, Muddassar
  • Iqbal, Kashif
  • Wang, Yichu
  • Bhutta, Muhammad Shoaib
  • Jaffri, Zain ul Abidin

Abstract

This paper analyzes the trends of CO2 and methane emissions associated with various economic parameters from the agricultural sector, which play an essential role in China's domestic and international economic activities and environmental sustainability. Annual data from 2000 to 2021 was collected from the World Bank’ official data bank portal. Statistical techniques and Graphical illustrations were applied to understand the impacts of economic variables on methane and CO2 emissions on the bioeconomy. The highest positive correlation (0.98) was observed between CO2 emissions and Research & Development, followed by a strong negative correlation (−0.97) between methane emissions and agricultural land. The Support Vector Regression (SVR) model was applied to analyze the non-linear relationship of economic factors with CO2 and methane emissions and prediction models for the emissions of methane and CO2 in China. The SVR results revealed a strongly non-linear association between CO2 and methane emissions and agricultural economic parameters. Due to the sustainable development policy, the forecasting approach demonstrates that these emissions will be constant in China for the next 10 years. This paper will assist the government and policymakers in understanding the role of the agricultural sector and its contributing factors to increasing CO2 and methane emissions along with their part in the economy, international trade, and environmental pollution.

Suggested Citation

  • Sarfraz, Muddassar & Iqbal, Kashif & Wang, Yichu & Bhutta, Muhammad Shoaib & Jaffri, Zain ul Abidin, 2023. "Role of agricultural resource sector in environmental emissions and its explicit relationship with sustainable development: Evidence from agri-food system in China," Resources Policy, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:jrpoli:v:80:y:2023:i:c:s0301420722006341
    DOI: 10.1016/j.resourpol.2022.103191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420722006341
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.103191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Xiaoliang & Xu, Xuefen & Chen, Qian & Che, Ying, 2018. "The impacts on CO2 emission reduction and haze by coal resource tax reform based on dynamic CGE model," Resources Policy, Elsevier, vol. 58(C), pages 268-276.
    2. Harpinder Sandhu, 2021. "Bottom-Up Transformation of Agriculture and Food Systems," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    3. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
    4. Stefania Bracco & Ozgul Calicioglu & Marta Gomez San Juan & Alessandro Flammini, 2018. "Assessing the Contribution of Bioeconomy to the Total Economy: A Review of National Frameworks," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    5. Zhu, Bangzhu & Wang, Kefan & Chevallier, Julien & Wang, Ping & Wei, Yi-Ming, 2015. "Can China achieve its carbon intensity target by 2020 while sustaining economic growth?," Ecological Economics, Elsevier, vol. 119(C), pages 209-216.
    6. Muddassar Sarfraz & Larisa Ivascu & Radian Belu & Alin Artene, 2021. "Accentuating the interconnection between business sustainability and organizational performance in the context of the circular economy: The moderating role of organizational competitiveness," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 2108-2118, May.
    7. Genovaite Liobikiene & Tomas Balezentis & Dalia Streimikiene & Xueli Chen, 2019. "Evaluation of bioeconomy in the context of strong sustainability," Sustainable Development, John Wiley & Sons, Ltd., vol. 27(5), pages 955-964, September.
    8. Li, Guo & Zakari, Abdulrasheed & Tawiah, Vincent, 2020. "Energy resource melioration and CO2 emissions in China and Nigeria: Efficiency and trade perspectives," Resources Policy, Elsevier, vol. 68(C).
    9. Jonek-Kowalska, Izabela, 2022. "Towards the reduction of CO2 emissions. Paths of pro-ecological transformation of energy mixes in European countries with an above-average share of coal in energy consumption," Resources Policy, Elsevier, vol. 77(C).
    10. Krishnan, Venkat & McCalley, James D., 2016. "The role of bio-renewables in national energy and transportation systems portfolio planning for low carbon economy," Renewable Energy, Elsevier, vol. 91(C), pages 207-223.
    11. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    12. Al Aali-Bujari & Francisco Venegas-Mart nez, 2021. "On the Relationship between Foreign Direct Investment and Energy Consumption: The Mexican Case," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 231-235.
    13. Zheng, Heyun & Ge, Liming, 2022. "Carbon emissions reduction effects of sustainable development policy in resource-based cities from the perspective of resource dependence: Theory and Chinese experience," Resources Policy, Elsevier, vol. 78(C).
    14. Larisa Ivascu & Muddassar Sarfraz & Aura Domil & Oana Bogdan & Valentin Burca, 2022. "Assessment of country institutional factor on sustainable energy target achievement in European Union," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 3641-3662, December.
    15. Jiang, Qingquan & Rahman, Zia Ur & Zhang, Xiaosan & Guo, Zhiqin & Xie, Qiaosheng, 2022. "An assessment of the impact of natural resources, energy, institutional quality, and financial development on CO2 emissions: Evidence from the B&R nations," Resources Policy, Elsevier, vol. 76(C).
    16. Beatrice Garske & Katharine Heyl & Felix Ekardt & Lea Moana Weber & Wiktoria Gradzka, 2020. "Challenges of Food Waste Governance: An Assessment of European Legislation on Food Waste and Recommendations for Improvement by Economic Instruments," Land, MDPI, vol. 9(7), pages 1-23, July.
    17. Hussain, Muzzammil & Wang, Wei & Wang, Yiwen, 2022. "Natural resources, consumer prices and financial development in China: Measures to control carbon emissions and ecological footprints," Resources Policy, Elsevier, vol. 78(C).
    18. Markus M. Bugge & Teis Hansen & Antje Klitkou, 2016. "What Is the Bioeconomy? A Review of the Literature," Sustainability, MDPI, vol. 8(7), pages 1-22, July.
    19. Wu, Linfei & Sun, Liwen & Qi, Peixiao & Ren, Xiangwei & Sun, Xiaoting, 2021. "Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions," Resources Policy, Elsevier, vol. 74(C).
    20. Sergi Maicas & José Juan Mateo, 2020. "Sustainability of Wine Production," Sustainability, MDPI, vol. 12(2), pages 1-10, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Lihong & Zhang, Panpan & Lin, Qi, 2023. "The loss of political connections and corporate financialization," Finance Research Letters, Elsevier, vol. 57(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio Alviar & Andrés García-Suaza & Laura Ramírez-Gómez & Simón Villegas-Velásquez, 2021. "Measuring the Contribution of the Bioeconomy: The Case of Colombia and Antioquia," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    2. Tina Highfill & Matthew Chambers, 2023. "Developing a National Measure of the Economic Contributions of the Bioeconomy," BEA Working Papers 0206, Bureau of Economic Analysis.
    3. Befort, N., 2020. "Going beyond definitions to understand tensions within the bioeconomy: The contribution of sociotechnical regimes to contested fields," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    4. Maximilian Kardung & Kutay Cingiz & Ortwin Costenoble & Roel Delahaye & Wim Heijman & Marko Lovrić & Myrna van Leeuwen & Robert M’Barek & Hans van Meijl & Stephan Piotrowski & Tévécia Ronzon & Johanne, 2021. "Development of the Circular Bioeconomy: Drivers and Indicators," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    5. Asada, Raphael & Cardellini, Giuseppe & Mair-Bauernfeind, Claudia & Wenger, Julia & Haas, Verena & Holzer, Daniel & Stern, Tobias, 2020. "Effective bioeconomy? a MRIO-based socioeconomic and environmental impact assessment of generic sectoral innovations," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    6. Tévécia Ronzon & Susanne Iost & George Philippidis, 2022. "Has the European Union entered a bioeconomy transition? Combining an output-based approach with a shift-share analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8195-8217, June.
    7. D'Amato, D. & Korhonen, J., 2021. "Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework," Ecological Economics, Elsevier, vol. 188(C).
    8. Durwin H.J. Lynch & Pim Klaassen & Lan van Wassenaer & Jacqueline E.W. Broerse, 2020. "Constructing the Public in Roadmapping the Transition to a Bioeconomy: A Case Study from the Netherlands," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    9. Marios Trigkas & Glykeria Karagouni, 2023. "State/Academia Key Stakeholders’ Perceptions Regarding Bioeconomy: Evidence from Greece," Sustainability, MDPI, vol. 15(13), pages 1-14, June.
    10. Marcelo Sili & Jochen Dürr, 2022. "Bioeconomic Entrepreneurship and Key Factors of Development: Lessons from Argentina," Sustainability, MDPI, vol. 14(4), pages 1-28, February.
    11. Daniela Pasnicu & Mihaela Ghenta & Aniela Matei, 2019. "Transition to Bioeconomy: Perceptions and Behaviors in Central and Eastern Europe," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(50), pages 1-9, February.
    12. Sun, Xiaohua & Ren, Junlin & Wang, Yun, 2022. "The impact of resource taxation on resource curse: Evidence from Chinese resource tax policy," Resources Policy, Elsevier, vol. 78(C).
    13. Simen Pedersen & Kristin E. Gangås & Madhu Chetri & Harry P. Andreassen, 2020. "Economic Gain vs. Ecological Pain—Environmental Sustainability in Economies Based on Renewable Biological Resources," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    14. Wiebke Jander & Sven Wydra & Johann Wackerbauer & Philipp Grundmann & Stephan Piotrowski, 2020. "Monitoring Bioeconomy Transitions with Economic–Environmental and Innovation Indicators: Addressing Data Gaps in the Short Term," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    15. Lisa Biber-Freudenberger & Amit Kumar Basukala & Martin Bruckner & Jan Börner, 2018. "Sustainability Performance of National Bio-Economies," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    16. George B. Frisvold & Steven M. Moss & Andrea Hodgson & Mary E. Maxon, 2021. "Understanding the U.S. Bioeconomy: A New Definition and Landscape," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    17. Zeug, Walther & Bezama, Alberto & Thrän, Daniela, 2020. "Towards a holistic and integrated Life Cycle Sustainability Assessment of the bioeconomy: Background on concepts, visions and measurements," UFZ Discussion Papers 7/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    18. Jim Philp, 2021. "Biotechnologies to Bridge the Schism in the Bioeconomy," Energies, MDPI, vol. 14(24), pages 1-19, December.
    19. Christina-Ioanna Papadopoulou & Efstratios Loizou & Katerina Melfou & Fotios Chatzitheodoridis, 2021. "The Knowledge Based Agricultural Bioeconomy: A Bibliometric Network Analysis," Energies, MDPI, vol. 14(20), pages 1-15, October.
    20. Biancolillo Ilaria & Paletto Alessandro & Bersier Jacques & Keller Michael & Romagnoli Manuela, 2020. "A literature review on forest bioeconomy with a bibliometric network analysis," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(7), pages 265-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:80:y:2023:i:c:s0301420722006341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.