IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v23y2018i8d10.1007_s11027-018-9782-3.html
   My bibliography  Save this article

Implication of the cluster analysis using greenhouse gas emissions of Asian countries to climate change mitigation

Author

Listed:
  • Yongbum Kwon

    (Incheon National University)

  • Hyeji Lee

    (Incheon National University)

  • Heekwan Lee

    (Incheon National University
    International Institute for Applied Systems Analysis)

Abstract

Climate change caused by excessive emission of greenhouse gases (GHGs) into the atmosphere has gained serious attention from the global community for a long time. More and more countries have decided to propose their goals such as Paris agreements, to reduce emitting these heat trapping compounds for sustainability. The Asian region houses dramatic changes with diverse religions and cultures, large populations as well as a rapidly changing socio-economic situations all of which are contributing to generating a mammoth amount of GHGs; hence, they require calls for related studies on climate change strategies. After pre-filtering of GHG emission information, 24 Asian countries have been selected as primary target countries. Hierarchical cluster analysis method using complete linkage technique was successfully applied for appropriate grouping. Six groups were categorized through GHG emission properties with major and minor emission sectors based on the GHG inventory covering energy, industrial processes, agriculture, waste, land use change, and forestry and bunker fuels. Assigning six groups using cluster analysis finally implied that the approach to establish GHG emission boundaries was meaningful to develop further mitigation strategies. Following the outcome of this study, calculating amount of reduction potential in suitable sectors as well as determining best practice, technology, and regulatory framework can be improved by policy makers, environmental scientists, and planners at the different levels. Therefore, this work on reviewing a wide range of GHG emission history and establishing boundaries of emission characteristics would provide further direction of effective climate change mitigation for sustainability and resilience in Asia.

Suggested Citation

  • Yongbum Kwon & Hyeji Lee & Heekwan Lee, 2018. "Implication of the cluster analysis using greenhouse gas emissions of Asian countries to climate change mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1225-1249, December.
  • Handle: RePEc:spr:masfgc:v:23:y:2018:i:8:d:10.1007_s11027-018-9782-3
    DOI: 10.1007/s11027-018-9782-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9782-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9782-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohajan, Haradhan, 2013. "Greenhouse Gas Emissions of China," MPRA Paper 53705, University Library of Munich, Germany, revised 05 Dec 2013.
    2. Neoklis Rodoulis, 2010. "Evaluation of Cyprus’ Electricity Generation Planning Using Mean-Variance Portfolio Theory," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 4(2), pages 25-42, December.
    3. Robert Mendelsohn & Ariel Dinar, 2009. "Climate Change and Agriculture," Books, Edward Elgar Publishing, number 12990.
    4. Liu, Zhu & Geng, Yong & Lindner, Soeren & Guan, Dabo, 2012. "Uncovering China’s greenhouse gas emission from regional and sectoral perspectives," Energy, Elsevier, vol. 45(1), pages 1059-1068.
    5. Juaidi, Adel & Montoya, Francisco G. & Gázquez, Jose A. & Manzano-Agugliaro, Francisco, 2016. "An overview of energy balance compared to sustainable energy in United Arab Emirates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1195-1209.
    6. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    7. Abdul-Wahab, Sabah A. & Charabi, Yassine & Al-Maamari, Rashid & Al-Rawas, Ghazi A. & Gastli, Adel & Chan, Keziah, 2015. "CO2 greenhouse emissions in Oman over the last forty-two years: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1702-1712.
    8. Kafle, Sagar & Parajuli, Ranjan & Bhattarai, Sujala & Euh, Seung Hee & Kim, Dae Hyun, 2017. "A review on energy systems and GHG emissions reduction plan and policy of the Republic of Korea: Past, present, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1123-1130.
    9. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    10. Daniel Murdiyarso & Louis Lebel, 2007. "Local to global perspectives on forest and land fires in Southeast Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(1), pages 3-11, January.
    11. Oh, Ilyoung & Wehrmeyer, Walter & Mulugetta, Yacob, 2010. "Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea," Energy Policy, Elsevier, vol. 38(1), pages 364-377, January.
    12. Kim, Yeonbae & Worrell, Ernst, 2002. "International comparison of CO2 emission trends in the iron and steel industry," Energy Policy, Elsevier, vol. 30(10), pages 827-838, August.
    13. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    14. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D. P. & Papastavros, C., 2004. "Mitigation policies for energy related greenhouse gas emissions in Cyprus: the potential role of natural gas imports," Energy Policy, Elsevier, vol. 32(8), pages 1001-1011, June.
    15. Yeonbae Kim & Ernst Worrell, 2002. "CO 2 Emission Trends in the Cement Industry: An International Comparison," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(2), pages 115-133, June.
    16. S. A. Montzka & E. J. Dlugokencky & J. H. Butler, 2011. "Non-CO2 greenhouse gases and climate change," Nature, Nature, vol. 476(7358), pages 43-50, August.
    17. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    18. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    19. Sami Bensassi & Laura Márquez-Ramos & Inmaculada Martínez-Zarzoso & Habib Zitouna, 2011. "The Geography of Trade and the Environment: The Case of CO2 Emissions," Working Papers 635, Economic Research Forum, revised 10 Jan 2011.
    20. W. J.W. Botzen & J. M. Gowdy & J. C.J.M. Van Den Bergh, 2008. "Cumulative CO 2 emissions: shifting international responsibilities for climate debt," Climate Policy, Taylor & Francis Journals, vol. 8(6), pages 569-576, November.
    21. Chang, Ching-Cheng, 2002. "The potential impact of climate change on Taiwan's agriculture," Agricultural Economics, Blackwell, vol. 27(1), pages 51-64, May.
    22. Li Li & Xuefei Hong & Dengli Tang & Ming Na, 2016. "GHG Emissions, Economic Growth and Urbanization: A Spatial Approach," Sustainability, MDPI, vol. 8(5), pages 1-16, May.
    23. Liu, Zhe & Geng, Yong & Adams, Michelle & Dong, Liang & Sun, Lina & Zhao, Jingjing & Dong, Huijuan & Wu, Jiao & Tian, Xu, 2016. "Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis," Applied Energy, Elsevier, vol. 166(C), pages 253-263.
    24. Mohammed Redha Qader, 2009. "Electricity Consumption and GHG Emissions in GCC Countries," Energies, MDPI, vol. 2(4), pages 1-13, December.
    25. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    26. Rodel Lasco & Florencia Pulhin, 2000. "Forest land use change in the philippines and climate change mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(1), pages 81-97, March.
    27. Yuksel, Ibrahim & Kaygusuz, Kamil, 2011. "Renewable energy sources for clean and sustainable energy policies in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4132-4144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miriam Andrejiová & Anna Grincova & Daniela Marasová, 2020. "Study of the Percentage of Greenhouse Gas Emissions from Aviation in the EU-27 Countries by Applying Multiple-Criteria Statistical Methods," IJERPH, MDPI, vol. 17(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. MEHEDI HASAN & Md. ABDUR RASHID SARKER & JEFF GOW, 2016. "Assessment Of Climate Change Impacts On Aman And Boro Rice Yields In Bangladesh," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 1-21, August.
    2. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    3. Boris O. K. Lokonon & Aklesso Y. G. Egbendewe & Naga Coulibaly & Calvin Atewamba, 2019. "The Potential Impact Of Climate Change On Agriculture In West Africa: A Bio-Economic Modeling Approach," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-30, November.
    4. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    5. Zhou, Li & Turvey, Calum G., 2014. "Climate change, adaptation and China's grain production," China Economic Review, Elsevier, vol. 28(C), pages 72-89.
    6. Zeenatul Islam & Mohammad Alauddin & Md. Abdur Rashid Sarker, 2017. "Farmers’ perception on climate change-driven rice production loss in drought-prone and groundwater-depleted areas of Bangladesh: An ordered probit analysis," Discussion Papers Series 579, School of Economics, University of Queensland, Australia.
    7. Robert Becker Pickson & Ge He, 2021. "Smallholder Farmers’ Perceptions, Adaptation Constraints, and Determinants of Adaptive Capacity to Climate Change in Chengdu," SAGE Open, , vol. 11(3), pages 21582440211, July.
    8. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    9. Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    10. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    11. Stefan Niederhafner, 2014. "The Korean Energy and GHG Target Management System: An Alternative to Kyoto-Protocol Emissions Trading Systems?," TEMEP Discussion Papers 2014118, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Sep 2014.
    12. Karlsson, Rasmus, 2012. "Carbon lock-in, rebound effects and China at the limits of statism," Energy Policy, Elsevier, vol. 51(C), pages 939-945.
    13. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    14. Jonathan E. Ogbuabor & Emmanuel I. Egwuchukwu, 2017. "The Impact of Climate Change on the Nigerian Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 217-223.
    15. Brockhaus, Jan & Huang, Jikun & Hu, Jiliang & Kalkuhl, Matthias & von Braun, Joachim & Yang, Guolei, 2015. "Rice, wheat, and corn supply response in China," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205988, Agricultural and Applied Economics Association.
    16. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    17. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    18. Dou, Xiaoya & Gray, Clark & Mueller, Valerie & Sheriff, Glen, 2016. "Labor adaptation to climate variability in Eastern Africa:," IFPRI discussion papers 1537, International Food Policy Research Institute (IFPRI).
    19. Dyah Maya Nihayah & Evi Gravitiani & Siti Aisyah Tri Rahayu, 2021. "Does the Clean Development Mechanism Exist in Developing Countries After an International Agreement?," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 409-417.
    20. Yonas Alem & Mathilde Maurel & Katrin Millock, 2016. "Migration as an Adaptation Strategy to Weather Variability: An Instrumental Variables Probit Analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01955941, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:23:y:2018:i:8:d:10.1007_s11027-018-9782-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.