IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i3d10.1007_s10668-018-0264-2.html
   My bibliography  Save this article

Does infrastructure and resource access matter for technical efficiency? An empirical analysis of fishing and fuelwood collection in Mozambique

Author

Listed:
  • Olli-Pekka Kuusela

    (Oregon State University)

  • Maria S. Bowman

    (USDA Economic Research Service)

  • Gregory S. Amacher
  • Richard B. Howarth

    (Dartmouth College)

  • Nadine T. Laporte

    (Northern Arizona University)

Abstract

We use an extensive location-stratified survey of rural households in the Sofala Province (Mozambique) to evaluate the importance of location relative to the Gorongosa National Park (and associated resource stocks) and access to infrastructure in determining household technical inefficiency of fuelwood collection and fish catch activities. The stochastic frontier econometric model corrects for unobserved household level inefficiency shocks and stochastic shocks to these production systems, as well as household time endogeneity. We find important differences in natural resource versus infrastructure access in terms of buffering efficiency-related shocks. For fuelwood collection, inefficiencies depend more on the proximity to roads than to the Gorongosa National Park, although both are important factors in explaining production outcomes. Our estimation results furthermore reveal the presence of a considerable level of inefficiency in both production activities. Overall, our results suggest that sustainable management of resources in and around the park is important for ensuring household well-being in the long run, particularly in the case of open access resources such as fuelwood and fish stocks.

Suggested Citation

  • Olli-Pekka Kuusela & Maria S. Bowman & Gregory S. Amacher & Richard B. Howarth & Nadine T. Laporte, 2020. "Does infrastructure and resource access matter for technical efficiency? An empirical analysis of fishing and fuelwood collection in Mozambique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 1811-1837, March.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:3:d:10.1007_s10668-018-0264-2
    DOI: 10.1007/s10668-018-0264-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-018-0264-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-018-0264-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greg Seymour, 2017. "Women's empowerment in agriculture: Implications for technical efficiency in rural Bangladesh," Agricultural Economics, International Association of Agricultural Economists, vol. 48(4), pages 513-522, July.
    2. Gunnar Köhlin & Peter J. Parks, 2001. "Spatial Variability and Disincentives to Harvest: Deforestation and Fuelwood Collection in South Asia," Land Economics, University of Wisconsin Press, vol. 77(2), pages 206-218.
    3. Nguyen, Trung Thanh & Do, Truong Lam & Bühler, Dorothee & Hartje, Rebecca & Grote, Ulrike, 2015. "Rural livelihoods and environmental resource dependence in Cambodia," Ecological Economics, Elsevier, vol. 120(C), pages 282-295.
    4. Tilahun, Mesfin & Maertens, Miet & Deckers, Jozef & Muys, Bart & Mathijs, Erik, 2016. "Impact of membership in frankincense cooperative firms on rural income and poverty in Tigray, Northern Ethiopia," Forest Policy and Economics, Elsevier, vol. 62(C), pages 95-108.
    5. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    6. E.T. Seyoum & G.E. Battese & E.M. Fleming, 1998. "Technical efficiency and productivity of maize producers in eastern Ethiopia: a study of farmers within and outside the Sasakawa‐Global 2000 project," Agricultural Economics, International Association of Agricultural Economists, vol. 19(3), pages 341-348, December.
    7. K. Hadri & C. Guermat & J. Whittaker, 2003. "Estimation of technical inefficiency effects using panel data and doubly heteroscedastic stochastic production frontiers," Empirical Economics, Springer, vol. 28(1), pages 203-222, January.
    8. Clements, Tom & Suon, Seng & Wilkie, David S. & Milner-Gulland, E.J., 2014. "Impacts of Protected Areas on Local Livelihoods in Cambodia," World Development, Elsevier, vol. 64(S1), pages 125-134.
    9. Benjamin, Dwayne, 1992. "Household Composition, Labor Markets, and Labor Demand: Testing for Separation in Agricultural Household Models," Econometrica, Econometric Society, vol. 60(2), pages 287-322, March.
    10. Mochebelele, Motsamai T. & Winter-Nelson, Alex, 2000. "Migrant Labor and Farm Technical Efficiency in Lesotho," World Development, Elsevier, vol. 28(1), pages 143-153, January.
    11. Alexander Pfaff & Juan Robalino & Robert Walker & Steven Aldrich & Marcellus Caldas & Eustaquio Reis & Stephen Perz & Claudio Bohrer & Eugenio Arima & William Laurance & Kathryn Kirby, 2007. "Road Investments, Spatial Spillovers, And Deforestation In The Brazilian Amazon," Journal of Regional Science, Wiley Blackwell, vol. 47(1), pages 109-123, February.
    12. Hadri, Kaddour, 1999. "Estimation of a Doubly Heteroscedastic Stochastic Frontier Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 359-363, July.
    13. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    14. Ogundari, Kolawole, 2014. "The Paradigm of Agricultural Efficiency and its Implication on Food Security in Africa: What Does Meta-analysis Reveal?," World Development, Elsevier, vol. 64(C), pages 690-702.
    15. Nguyen, Trung Thanh & Do, Truong Lam & Parvathi, Priyanka & Wossink, Ada & Grote, Ulrike, 2018. "Farm production efficiency and natural forest extraction: Evidence from Cambodia," Land Use Policy, Elsevier, vol. 71(C), pages 480-493.
    16. Chand, Narendra & Kerr, Geoffrey N. & Bigsby, Hugh, 2015. "Production efficiency of community forest management in Nepal," Forest Policy and Economics, Elsevier, vol. 50(C), pages 172-179.
    17. Sherlund, Shane M. & Barrett, Christopher B. & Adesina, Akinwumi A., 2002. "Smallholder technical efficiency controlling for environmental production conditions," Journal of Development Economics, Elsevier, vol. 69(1), pages 85-101, October.
    18. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    19. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    20. Abdul Wadud & Ben White, 2000. "Farm household efficiency in Bangladesh: a comparison of stochastic frontier and DEA methods," Applied Economics, Taylor & Francis Journals, vol. 32(13), pages 1665-1673.
    21. Cavendish, William, 2000. "Empirical Regularities in the Poverty-Environment Relationship of Rural Households: Evidence from Zimbabwe," World Development, Elsevier, vol. 28(11), pages 1979-2003, November.
    22. Pascual, Unai, 2005. "Land use intensification potential in slash-and-burn farming through improvements in technical efficiency," Ecological Economics, Elsevier, vol. 52(4), pages 497-511, March.
    23. Battese, George E., 1992. "Frontier production functions and technical efficiency: a survey of empirical applications in agricultural economics," Agricultural Economics, Blackwell, vol. 7(3-4), pages 185-208, October.
    24. Parvathi, Priyanka & Nguyen, Trung Thanh, 2018. "Is Environmental Income Reporting Evasive in Household Surveys? Evidence From Rural Poor in Laos," Ecological Economics, Elsevier, vol. 143(C), pages 218-226.
    25. Musa Hasen Ahmed & Kumilachew Alamerie Melesse, 2018. "Impact of off-farm activities on technical efficiency: evidence from maize producers of eastern Ethiopia," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 6(1), pages 1-15, December.
    26. Fisher, Monica, 2004. "Household welfare and forest dependence in Southern Malawi," Environment and Development Economics, Cambridge University Press, vol. 9(2), pages 135-154, May.
    27. Hanan G. Jacoby, 1993. "Shadow Wages and Peasant Family Labour Supply: An Econometric Application to the Peruvian Sierra," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(4), pages 903-921.
    28. Wunder, Sven & Börner, Jan & Shively, Gerald & Wyman, Miriam, 2014. "Safety Nets, Gap Filling and Forests: A Global-Comparative Perspective," World Development, Elsevier, vol. 64(S1), pages 29-42.
    29. Binam, Joachim Nyemeck & Tonye, Jean & wandji, Njankoua & Nyambi, Gwendoline & Akoa, Mireille, 2004. "Factors affecting the technical efficiency among smallholder farmers in the slash and burn agriculture zone of Cameroon," Food Policy, Elsevier, vol. 29(5), pages 531-545, October.
    30. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    31. Belcher, Brian & Achdiawan, Ramadhani & Dewi, Sonya, 2015. "Forest-Based Livelihoods Strategies Conditioned by Market Remoteness and Forest Proximity in Jharkhand, India," World Development, Elsevier, vol. 66(C), pages 269-279.
    32. Seyoum, E. T. & Battese, G. E. & Fleming, E. M., 1998. "Technical efficiency and productivity of maize producers in eastern Ethiopia: a study of farmers within and outside the Sasakawa-Global 2000 project," Agricultural Economics, Blackwell, vol. 19(3), pages 341-348, December.
    33. Gebregziabher, Gebrehaweria & Namara, Regassa E. & Holden, Stein, 2012. "Technical Efficiency of Irrigated and Rain-Fed Smallholder Agriculture in Tigray, Ethiopia: A Comparative Stochastic Frontier Production Function Analysis," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 51(3), pages 1-24, August.
    34. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    35. Pfaff, Alexander S. P., 1999. "What Drives Deforestation in the Brazilian Amazon?: Evidence from Satellite and Socioeconomic Data," Journal of Environmental Economics and Management, Elsevier, vol. 37(1), pages 26-43, January.
    36. Bluffstone Randall A., 1995. "The Effect of Labor Market Performance on Deforestation in Developing Countries under Open Access: An Example from Rural Nepal," Journal of Environmental Economics and Management, Elsevier, vol. 29(1), pages 42-63, July.
    37. Angelsen, Arild & Jagger, Pamela & Babigumira, Ronnie & Belcher, Brian & Hogarth, Nicholas J. & Bauch, Simone & Börner, Jan & Smith-Hall, Carsten & Wunder, Sven, 2014. "Environmental Income and Rural Livelihoods: A Global-Comparative Analysis," World Development, Elsevier, vol. 64(S1), pages 12-28.
    38. Amacher, Gregory S. & Hyde, William F. & Kanel, Keshav R., 1996. "Household fuelwood demand and supply in Nepal's tarai and mid-hills: Choice between cash outlays and labor opportunity," World Development, Elsevier, vol. 24(11), pages 1725-1736, November.
    39. Madan M. Dey & Ferdinand J. Paraguas & Patrick Kambewa & Diemuth E. Pemsl, 2010. "The impact of integrated aquaculture–agriculture on small‐scale farms in Southern Malawi," Agricultural Economics, International Association of Agricultural Economists, vol. 41(1), pages 67-79, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    2. Chirwa Ephraim W., 2007. "Sources of Technical Efficiency among Smallholder Maize Farmers in Southern Malawi," Working Papers 172, African Economic Research Consortium, Research Department.
    3. Nelson Mango & Clifton Makate & Benjamin Hanyani-Mlambo & Shephard Siziba & Mark Lundy & Caroline Elliott, 2015. "A stochastic frontier analysis of technical efficiency in smallholder maize production in Zimbabwe: The post-fast-track land reform outlook," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1117189-111, December.
    4. Nguyen, Trung Thanh & Do, Truong Lam & Parvathi, Priyanka & Wossink, Ada & Grote, Ulrike, 2018. "Farm production efficiency and natural forest extraction: Evidence from Cambodia," Land Use Policy, Elsevier, vol. 71(C), pages 480-493.
    5. Jara-Rojas, Roberto & Bravo-Ureta, Boris E. & Moreira, Victor H. & Diaz, Jose, 2012. "Natural Resource Conservation and Technical Efficiency from Small-scale Farmers in Central Chile," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126227, International Association of Agricultural Economists.
    6. Md Abdur Rouf, 2020. "Evaluation of Agricultural Projects by Parametric Cost Efficiency and Productivity-gap Approaches: An Empirical Study of Flood Control and Drainage Systems in the Southwest Coastal Area of Bangladesh," Japanese Journal of Agricultural Economics (formerly Japanese Journal of Rural Economics), Agricultural Economics Society of Japan (AESJ), vol. 22.
    7. Gebregziabher, Gebrehaweria & Namara, Regassa E. & Holden, Stein, 2012. "Technical Efficiency of Irrigated and Rain-Fed Smallholder Agriculture in Tigray, Ethiopia: A Comparative Stochastic Frontier Production Function Analysis," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 51(3), pages 1-24, August.
    8. Daniel Solís & Boris E. Bravo‐Ureta & Ricardo E. Quiroga, 2009. "Technical Efficiency among Peasant Farmers Participating in Natural Resource Management Programmes in Central America," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 202-219, February.
    9. Dimitris Christopoulos & Margarita Genius & Vangelis Tzouvelekas, 2021. "Farm and non-farm labor decisions and household efficiency," Journal of Productivity Analysis, Springer, vol. 56(1), pages 15-31, August.
    10. Phu Nguyen-Van & Nguyen To-The, 2016. "Technical efficiency and agricultural policy: evidence from the teaproduction in Vietnam," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 97(3), pages 173-184.
    11. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    12. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    13. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
    14. Binam, Joachim Nyemeck & Tonye, Jean & wandji, Njankoua & Nyambi, Gwendoline & Akoa, Mireille, 2004. "Factors affecting the technical efficiency among smallholder farmers in the slash and burn agriculture zone of Cameroon," Food Policy, Elsevier, vol. 29(5), pages 531-545, October.
    15. repec:ags:bdbjaf:258303 is not listed on IDEAS
    16. Rouf, Abdur, 2015. "Conventional vs Natural Flood Control and Drainage Managements in a Tidal Coastal Zone: An Evaluation from a Productive Efficiency Perspective," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 256023, Agricultural Economics Society.
    17. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    18. Markose Chekol Zewdie & Michele Moretti & Daregot Berihun Tenessa & Zemen Ayalew Ayele & Jan Nyssen & Enyew Adgo Tsegaye & Amare Sewnet Minale & Steven Van Passel, 2021. "Agricultural Technical Efficiency of Smallholder Farmers in Ethiopia: A Stochastic Frontier Approach," Land, MDPI, vol. 10(3), pages 1-17, March.
    19. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    20. Pantzios, Christos J. & Rozakis, Stelios & Tzouvelekas, Vangelis, 2006. "Evading Farm Support Reduction via Efficient Input Use: The Case of Greek Cotton Growers," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 38(3), pages 555-574, December.
    21. Bozoglu, Mehmet & Ceyhan, Vedat, 2007. "Measuring the technical efficiency and exploring the inefficiency determinants of vegetable farms in Samsun province, Turkey," Agricultural Systems, Elsevier, vol. 94(3), pages 649-656, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:3:d:10.1007_s10668-018-0264-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.