IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v45y2018i1d10.1007_s11116-016-9720-8.html
   My bibliography  Save this article

Modelling joint activity-travel pattern scheduling problem in multi-modal transit networks

Author

Listed:
  • Xiao Fu

    (Southeast University)

  • William H. K. Lam

    (The Hong Kong Polytechnic University)

Abstract

Over the past decades, many activity-based travel behaviour models have been proposed based on individuals’ independent decision making. The modelling of individuals’ joint activity/travel choices, however, has received less attention. In reality, both independent and joint activities/travels form individual’s normal daily activity-travel patterns. Travel surveys have indicated that joint activity/travel constitutes an important part in individuals’ daily activity-travel patterns. On this basis, explicit modelling of joint activity/travel choices is an essential component for long-term transport planning. In this study, an activity-based network equilibrium model is proposed for scheduling two-individual joint activity-travel patterns (JATPs) in congested multi-modal transit networks. The proposed model can be used to comprehensively investigate individuals’ activity choices (e.g. activity start time and duration, activity sequence) and travel choices (e.g. departure time, route and mode) in multi-modal transit networks, including both independent ones and joint ones. The time-dependent JATP choice problem is converted into an equivalent static user equilibrium model by constructing a joint-activity-time-space (JATS) super-network platform. Joint travel benefit is modelled by incorporating a commonality factor in the JATP utility. A solution algorithm without prior JATP enumeration is proposed to solve the JATP scheduling problem on the JATS super-network. Numerical results show that individuals’ independent and joint activity/travel choices can be simultaneously investigated by the proposed model. The impacts of joint travel benefit on individuals’ independent and joint activity-travel choices are explicitly investigated.

Suggested Citation

  • Xiao Fu & William H. K. Lam, 2018. "Modelling joint activity-travel pattern scheduling problem in multi-modal transit networks," Transportation, Springer, vol. 45(1), pages 23-49, January.
  • Handle: RePEc:kap:transp:v:45:y:2018:i:1:d:10.1007_s11116-016-9720-8
    DOI: 10.1007/s11116-016-9720-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-016-9720-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-016-9720-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golob, Thomas F. & McNally, Michael G., 1997. "A Model of Activity Participation Between Household Heads," University of California Transportation Center, Working Papers qt4dj8f1gg, University of California Transportation Center.
    2. Hai-Jun Huang & William Lam, 2005. "A Stochastic Model for Combined Activity/Destination/Route Choice Problems," Annals of Operations Research, Springer, vol. 135(1), pages 111-125, March.
    3. Arentze, Theo A. & Timmermans, Harry J.P., 2009. "A need-based model of multi-day, multi-person activity generation," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 251-265, February.
    4. Nielsen, Otto Anker, 2000. "A stochastic transit assignment model considering differences in passengers utility functions," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 377-402, June.
    5. Lam, William H. K. & Yin, Yafeng, 2001. "An activity-based time-dependent traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 549-574, July.
    6. Zhi-Chun Li & William Lam & S. Wong & A. Sumalee, 2010. "An activity-based approach for scheduling multimodal transit services," Transportation, Springer, vol. 37(5), pages 751-774, September.
    7. Sivaramakrishnan Srinivasan & Chandra Bhat, 2008. "An exploratory analysis of joint-activity participation characteristics using the American time use survey," Transportation, Springer, vol. 35(3), pages 301-327, May.
    8. Toshiyuki Yamamoto & Ryuichi Kitamura, 1999. "An analysis of time allocation to in-home and out-of-home discretionary activities across working days and non- working days," Transportation, Springer, vol. 26(2), pages 231-250, May.
    9. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
    10. Moshe Hirsh & Joseph N. Prashkea & Moshe Ben-Akiva, 1986. "Dynamic Model of Weekly Activity Pattern," Transportation Science, INFORMS, vol. 20(1), pages 24-36, February.
    11. Chow, Joseph Y.J. & Recker, Will W., 2012. "Inverse optimization with endogenous arrival time constraints to calibrate the household activity pattern problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 463-479.
    12. Zhang, Junyi & Kuwano, Masashi & Lee, Backjin & Fujiwara, Akimasa, 2009. "Modeling household discrete choice behavior incorporating heterogeneous group decision-making mechanisms," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 230-250, February.
    13. Lo, Hong K. & Yip, C. W. & Wan, K. H., 2003. "Modeling transfer and non-linear fare structure in multi-modal network," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 149-170, February.
    14. Fang, Zhixiang & Tu, Wei & Li, Qingquan & Li, Qiuping, 2011. "A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities," Journal of Transport Geography, Elsevier, vol. 19(4), pages 623-634.
    15. Xiao Fu & William Lam, 2014. "A network equilibrium approach for modelling activity-travel pattern scheduling problems in multi-modal transit networks with uncertainty," Transportation, Springer, vol. 41(1), pages 37-55, January.
    16. Ronald, Nicole & Arentze, Theo & Timmermans, Harry, 2012. "Modeling social interactions between individuals for joint activity scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 276-290.
    17. Golob, Thomas F. & McNally, Michael G., 1997. "A model of activity participation and travel interactions between household heads," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 177-194, June.
    18. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
    19. Gitakrishnan Ramadurai & Satish Ukkusuri, 2010. "Dynamic User Equilibrium Model for Combined Activity-Travel Choices Using Activity-Travel Supernetwork Representation," Networks and Spatial Economics, Springer, vol. 10(2), pages 273-292, June.
    20. F. Guerriero & R. Musmanno, 2001. "Label Correcting Methods to Solve Multicriteria Shortest Path Problems," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 589-613, December.
    21. William Lam & Hai-jun Huang, 2002. "A combined activity/travel choice model for congested road networks with queues," Transportation, Springer, vol. 29(1), pages 5-29, February.
    22. Recker, W. W., 1995. "The household activity pattern problem: General formulation and solution," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 61-77, February.
    23. Liu, Peng & Liao, Feixiong & Huang, Hai-Jun & Timmermans, Harry, 2015. "Dynamic activity-travel assignment in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 656-671.
    24. John Gliebe & Frank Koppelman, 2002. "A model of joint activity participation between household members," Transportation, Springer, vol. 29(1), pages 49-72, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Rasouli, Soora & Huang, Hai-Jun, 2020. "Tolerance-based column generation for boundedly rational dynamic activity-travel assignment in large-scale networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    2. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    3. Witsarut Achariyaviriya & Yoshitsugu Hayashi & Hiroyuki Takeshita & Masanobu Kii & Varameth Vichiensan & Thanaruk Theeramunkong, 2021. "Can Space–Time Shifting of Activities and Travels Mitigate Hyper-Congestion in an Emerging Megacity, Bangkok? Effects on Quality of Life and CO 2 Emission," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    4. Nguyen, Tri K. & Hoang, Nam H. & Vu, Hai L., 2022. "A unified activity-based framework for one-way car-sharing services in multi-modal transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    6. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    7. Chao Wang & Zhuoqun Sun & Zhirui Ye, 2020. "On-Road Bus Emission Comparison for Diverse Locations and Fuel Types in Real-World Operation Conditions," Sustainability, MDPI, vol. 12(5), pages 1-14, February.
    8. Ma, Ke & Wang, Hao & Ruan, Tiancheng, 2021. "Analysis of road capacity and pollutant emissions: Impacts of Connected and automated vehicle platoons on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    9. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    10. Yanan Zhang & Hongke Xu & Qing-Chang Lu & Xiaohui Fan, 2022. "Travel Time Reliability Analysis Considering Bus Bunching: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
    11. Fu, Xiao & Wu, Youqi & Huang, Di & Wu, Jianjun, 2022. "An activity-based model for transit network design and activity location planning in a three-party game framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    12. Zuo, Yufan & Fu, Xiao & Liu, Zhiyuan & Huang, Di, 2021. "Short-term forecasts on individual accessibility in bus system based on neural network model," Journal of Transport Geography, Elsevier, vol. 93(C).
    13. Muhammad Usama & Yongjun Shen & Onaira Zahoor, 2019. "Towards an Energy Efficient Solution for Bike-Sharing Rebalancing Problems: A Battery Electric Vehicle Scenario," Energies, MDPI, vol. 12(13), pages 1-21, June.
    14. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    15. Fu, Xiao & Zuo, Yufan & Zhang, Shanqi & Liu, Zhiyuan, 2022. "Measuring joint space-time accessibility in transit network under travel time uncertainty," Transport Policy, Elsevier, vol. 116(C), pages 355-368.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Fu & William Lam, 2014. "A network equilibrium approach for modelling activity-travel pattern scheduling problems in multi-modal transit networks with uncertainty," Transportation, Springer, vol. 41(1), pages 37-55, January.
    2. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    3. Zhi-Chun Li & William Lam & S. Wong & A. Sumalee, 2010. "An activity-based approach for scheduling multimodal transit services," Transportation, Springer, vol. 37(5), pages 751-774, September.
    4. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    5. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    6. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Rasouli, Soora & Huang, Hai-Jun, 2020. "Tolerance-based column generation for boundedly rational dynamic activity-travel assignment in large-scale networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    7. Fu, Xiao & Wu, Youqi & Huang, Di & Wu, Jianjun, 2022. "An activity-based model for transit network design and activity location planning in a three-party game framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    8. Allahviranloo, Mahdieh & Axhausen, Kay, 2018. "An optimization model to measure utility of joint and solo activities," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 172-187.
    9. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.
    10. Cantelmo, Guido & Viti, Francesco, 2019. "Incorporating activity duration and scheduling utility into equilibrium-based Dynamic Traffic Assignment," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 365-390.
    11. Thibaut Dubernet & Kay Axhausen, 2015. "Implementing a household joint activity-travel multi- agent simulation tool: first results," Transportation, Springer, vol. 42(5), pages 753-769, September.
    12. Chinh Ho & Corinne Mulley, 2015. "Intra-household interactions in transport research: a review," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 33-55, January.
    13. Liu, Peng & Liao, Feixiong & Huang, Hai-Jun & Timmermans, Harry, 2015. "Dynamic activity-travel assignment in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 656-671.
    14. Li, Qing & Liao, Feixiong & Timmermans, Harry J.P. & Huang, Haijun & Zhou, Jing, 2018. "Incorporating free-floating car-sharing into an activity-based dynamic user equilibrium model: A demand-side model," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 102-123.
    15. Hu, Yang & van Wee, Bert & Ettema, Dick, 2023. "Intra-household decisions and the impact of the built environment on activity-travel behavior: A review of the literature," Journal of Transport Geography, Elsevier, vol. 106(C).
    16. Qing Li & Feixiong Liao & Harry J. P. Timmermans & Jing Zhou, 2016. "A reference-dependent user equilibrium model for activity-travel scheduling," Transportation, Springer, vol. 43(6), pages 1061-1077, November.
    17. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2014. "Bottleneck model revisited: An activity-based perspective," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 262-287.
    18. Lin, Tao & Wang, Donggen, 2014. "Social networks and joint/solo activity–travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 18-31.
    19. Ruiz, Tomás & Habib, Khandker Nurul, 2016. "Scheduling decision styles on leisure and social activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 304-317.
    20. Fang, Zhixiang & Tu, Wei & Li, Qingquan & Li, Qiuping, 2011. "A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities," Journal of Transport Geography, Elsevier, vol. 19(4), pages 623-634.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:45:y:2018:i:1:d:10.1007_s11116-016-9720-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.