IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v107y2023ics0966692323000170.html
   My bibliography  Save this article

Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro

Author

Listed:
  • Cheng, Long
  • Huang, Jie
  • Jin, Tanhua
  • Chen, Wendong
  • Li, Aoyong
  • Witlox, Frank

Abstract

Shared micro-mobility has been booming in recent years and the coordinated development of different modes can play an important role in improving the connectivity of the urban public transport system. While most previous studies have analysed the feeder trips of individual modes, few comparative studies of different modes have been conducted. To this end, we compared the spatial and temporal patterns in the integrated use of station-based bikeshare systems (SBBS) and free-floating bikeshare systems (FFBS) with the metro. This study used the smart card data of SBBS and transaction data of FFBS from 1st to 30th September 2017, in Nanjing, China. Generalised additive mixed models were applied to examine the nuanced effects of the built environment, weather factors and temporal variables, while taking into account spatio-temporal autocorrelations. The results show that SBBS are used more as a feeder mode at downtown metro stations and exhibit pronounced rush hour patterns. FFBS-metro integrated use is spatially more dispersed at peripheral stations and covers wider periods of the day. This suggests that SBBS use is more demand-driven, while FFBS use is more efficiency-driven. The built environment shows different forms of effects: variables that have a linear relationship with SBBS-metro integrated use show non-linear effects in the FFBS model, and vice versa. Certain variables also present variations in their non-linear patterns. For instance, the plateau effect of road density for SBBS occurs at 10.5 km/km2, while the optimal employment density for FFBS is 12,000 jobs/km2. Inadequate or excessive development can lead to a decrease in integration efficiency. These findings can inform how service providers optimise fleet reallocation and how transport planners tailor spatial interventions that promote the integration of bikeshare and the metro system.

Suggested Citation

  • Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
  • Handle: RePEc:eee:jotrge:v:107:y:2023:i:c:s0966692323000170
    DOI: 10.1016/j.jtrangeo.2023.103545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692323000170
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2023.103545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    2. Li, Haojie & Zhang, Yingheng & Ding, Hongliang & Ren, Gang, 2019. "Effects of dockless bike-sharing systems on the usage of the London Cycle Hire," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 398-411.
    3. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "Measuring immediate impacts of a new mass transit system on an existing bike-share system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 20-39.
    4. Qian, Xiaodong & Jaller, Miguel & Niemeier, Debbie, 2020. "Enhancing equitable service level: Which can address better, dockless or dock-based Bikeshare systems?," Journal of Transport Geography, Elsevier, vol. 86(C).
    5. Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
    6. Cheng, Long & Yang, Junjian & Chen, Xuewu & Cao, Mengqiu & Zhou, Hang & Sun, Yu, 2020. "How could the station-based bike sharing system and the free-floating bike sharing system be coordinated?," Journal of Transport Geography, Elsevier, vol. 89(C).
    7. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    8. Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
    9. Lazarus, Jessica & Pourquier, Jean Carpentier & Feng, Frank & Hammel, Henry & Shaheen, Susan, 2020. "Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco," Journal of Transport Geography, Elsevier, vol. 84(C).
    10. Lu, Ying & Prato, Carlo G. & Corcoran, Jonathan, 2021. "Disentangling the behavioural side of the first and last mile problem: the role of modality style and the built environment," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Lazarus, Jessica & Pourquier, Jean Carpentier & Feng, Frank & Hammel, Henry & Shaheen, Susan, 2020. "Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt96g9c9nd, Institute of Transportation Studies, UC Berkeley.
    12. Xiao Fu & William H. K. Lam, 2018. "Modelling joint activity-travel pattern scheduling problem in multi-modal transit networks," Transportation, Springer, vol. 45(1), pages 23-49, January.
    13. Noland, Robert B., 2021. "Scootin’ in the rain: Does weather affect micromobility?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 114-123.
    14. Martin, Rebecca & Xu, Yilan, 2022. "Is tech-enhanced bikeshare a substitute or complement for public transit?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 63-78.
    15. McKenzie, Grant, 2019. "Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C," Journal of Transport Geography, Elsevier, vol. 78(C), pages 19-28.
    16. Cheng, Long & Wang, Kailai & De Vos, Jonas & Huang, Jie & Witlox, Frank, 2022. "Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: A quantile regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 175-187.
    17. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    18. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
    19. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    20. Ela Babalik-Sutcliffe, 2002. "Urban rail systems: Analysis of the factors behind success," Transport Reviews, Taylor & Francis Journals, vol. 22(4), pages 415-447, January.
    21. Fu, Xiao & Zuo, Yufan & Zhang, Shanqi & Liu, Zhiyuan, 2022. "Measuring joint space-time accessibility in transit network under travel time uncertainty," Transport Policy, Elsevier, vol. 116(C), pages 355-368.
    22. Hu, Songhua & Chen, Mingyang & Jiang, Yuan & Sun, Wei & Xiong, Chenfeng, 2022. "Examining factors associated with bike-and-ride (BnR) activities around metro stations in large-scale dockless bikesharing systems," Journal of Transport Geography, Elsevier, vol. 98(C).
    23. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    24. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    25. Younes, Hannah & Zou, Zhenpeng & Wu, Jiahui & Baiocchi, Giovanni, 2020. "Comparing the Temporal Determinants of Dockless Scooter-share and Station-based Bike-share in Washington, D.C," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 308-320.
    26. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    27. Martens, Karel, 2007. "Promoting bike-and-ride: The Dutch experience," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 326-338, May.
    28. Shaheen, Susan PhD & Cohen, Adam & Martin, Elliot PhD, 2013. "Public Bikesharing in North America: Early Operator Understanding and Emerging Trends," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1x26m6z7, Institute of Transportation Studies, UC Berkeley.
    29. Zheyan Chen & Dea van Lierop & Dick Ettema, 2020. "Dockless bike-sharing systems: what are the implications?," Transport Reviews, Taylor & Francis Journals, vol. 40(3), pages 333-353, May.
    30. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Tonggaochuan & Cheng, Long & Yang, Yongjiang & Deng, Jialin & Jin, Tanhua & Cao, Mengqiu, 2023. "Do residents living in transit-oriented development station catchment areas travel more sustainably? The impacts of life events," LSE Research Online Documents on Economics 118813, London School of Economics and Political Science, LSE Library.
    2. Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    3. Gao, Kun & Yang, Ying & Gil, Jorge & Qu, Xiaobo, 2023. "Data-driven interpretation on interactive and nonlinear effects of the correlated built environment on shared mobility," Journal of Transport Geography, Elsevier, vol. 110(C).
    4. Wang, Kailai & Chen, Zhenhua & Cheng, Long & Zhu, Pengyu & Shi, Jian & Bian, Zheyong, 2023. "Integrating spatial statistics and machine learning to identify relationships between e-commerce and distribution facilities in Texas, US," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    5. Wang, Yufei & Hua, Mingzhuang & Chen, Xuewu & Chen, Wendong, 2023. "Sustainable response strategy for COVID-19: Pandemic zoning with urban multimodal transport data," Journal of Transport Geography, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    3. Cheng, Long & Wang, Kailai & De Vos, Jonas & Huang, Jie & Witlox, Frank, 2022. "Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: A quantile regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 175-187.
    4. Meng, Si'an & Brown, Anne, 2021. "Docked vs. dockless equity: Comparing three micromobility service geographies," Journal of Transport Geography, Elsevier, vol. 96(C).
    5. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    6. Cheng, Long & Yang, Junjian & Chen, Xuewu & Cao, Mengqiu & Zhou, Hang & Sun, Yu, 2020. "How could the station-based bike sharing system and the free-floating bike sharing system be coordinated?," Journal of Transport Geography, Elsevier, vol. 89(C).
    7. Yang, Hongtai & Huo, Jinghai & Bao, Yongxing & Li, Xuan & Yang, Linchuan & Cherry, Christopher R., 2021. "Impact of e-scooter sharing on bike sharing in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 23-36.
    8. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    9. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    10. Gao, Kun & Yang, Ying & Li, Aoyong & Li, Junhong & Yu, Bo, 2021. "Quantifying economic benefits from free-floating bike-sharing systems: A trip-level inference approach and city-scale analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 89-103.
    11. Namkung, Ok Stella & Park, Jonghan & Ko, Joonho, 2023. "Public bike users’ annual travel distance: Findings from combined data of user survey and annual rental records," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    12. Dongdong Feng & Lin Cheng & Mingyang Du, 2020. "Exploring the Impact of Dockless Bikeshare on Docked Bikeshare—A Case Study in London," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    13. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    14. Zhang, Ziru & Krishnakumari, Panchamy & Schulte, Frederik & van Oort, Niels, 2023. "Improving the service of E-bike sharing by demand pattern analysis: A data-driven approach," Research in Transportation Economics, Elsevier, vol. 101(C).
    15. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    16. Arias-Molinares, Daniela & Romanillos, Gustavo & García-Palomares, Juan Carlos & Gutiérrez, Javier, 2021. "Exploring the spatio-temporal dynamics of moped-style scooter sharing services in urban areas," Journal of Transport Geography, Elsevier, vol. 96(C).
    17. Dandan Xu & Yang Bian & Shinan Shu, 2020. "Research on the Psychological Model of Free-floating Bike-Sharing Using Behavior: A Case Study of Beijing," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    18. Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    19. Cai Jia & Yanyan Chen & Tingzhao Chen & Yanan Li & Luzhou Lin, 2022. "Evolutionary Game Analysis on Sharing Bicycles and Metro Strategies: Impact of Phasing out Subsidies for Bicycle–Metro Integration Model," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    20. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:107:y:2023:i:c:s0966692323000170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.