IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v42y2015i6p933-949.html
   My bibliography  Save this article

Metro service disruptions: how do people choose to travel?

Author

Listed:
  • Anastasia Pnevmatikou
  • Matthew Karlaftis
  • Konstantinos Kepaptsoglou

Abstract

While metro disruptions can have a significant impact to the travel patterns and behavior of users, research on that topic has been limited. Using Athens, Greece, as a study case, this paper combines information on traveler experiences and perceptions and attempts to model mode choice during a long-run metro service disruption. A Nested Logit (NL) approach for jointly analyzing RP/SP data is applied and compared to individual RP and SP based MNL models. Findings suggest that the propensity to shift to buses or cars in such cases depends—to a large extent—on the travelers’ available income. Also, the possibility of a flexible work schedule is negatively correlated with the choice of using a car during metro closures. Finally, the overall performance of the joint RP/SP Nested Logit model has been found to be superior to that of the joint RP/SP MNL model. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Anastasia Pnevmatikou & Matthew Karlaftis & Konstantinos Kepaptsoglou, 2015. "Metro service disruptions: how do people choose to travel?," Transportation, Springer, vol. 42(6), pages 933-949, November.
  • Handle: RePEc:kap:transp:v:42:y:2015:i:6:p:933-949
    DOI: 10.1007/s11116-015-9656-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-015-9656-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-015-9656-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Exel, N.J.A. & Rietveld, P., 2009. "When strike comes to town... anticipated and actual behavioural reactions to a one-day, pre-announced, complete rail strike in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 526-535, June.
    2. Dhar, Ravi, 1997. "Consumer Preference for a No-Choice Option," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 24(2), pages 215-231, September.
    3. van Exel, N. Job A. & Rietveld, Piet, 2001. "Public transport strikes and traveller behaviour," Transport Policy, Elsevier, vol. 8(4), pages 237-246, October.
    4. Bhat, Chandra R., 1998. "Accommodating flexible substitution patterns in multi-dimensional choice modeling: formulation and application to travel mode and departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 455-466, September.
    5. Shanjiang Zhu & Nebiyou Tilahun & Xiaozheng He & David M. Levinson, 2012. "Travel Impacts and Adjustment Strategies of the Collapse and the Reopening of the I-35W Bridge," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 21-36, Springer.
    6. Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
    7. Lo, Shih-Che & Hall, Randolph W., 2006. "Effects of the Los Angeles transit strike on highway congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 903-917, December.
    8. Florian Heiss, 2002. "Structural choice analysis with nested logit models," Stata Journal, StataCorp LP, vol. 2(3), pages 227-252, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duy Q. Nguyen-Phuoc & William Young & Graham Currie & Chris Gruyter, 2020. "Traffic congestion relief associated with public transport: state-of-the-art," Public Transport, Springer, vol. 12(2), pages 455-481, June.
    2. Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
    3. Sarker, Rumana Islam & Kaplan, Sigal & Mailer, Markus & Timmermans, Harry J.P., 2019. "Applying affective event theory to explain transit users’ reactions to service disruptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 593-605.
    4. Li, Binbin & Yao, Enjian & Yamamoto, Toshiyuki & Tang, Ying & Liu, Shasha, 2020. "Exploring behavioral heterogeneities of metro passenger’s travel plan choice under unplanned service disruption with uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 294-306.
    5. Chen, Jinqu & Liu, Jie & Peng, Qiyuan & Yin, Yong, 2022. "Resilience assessment of an urban rail transit network: A case study of Chengdu subway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    6. Elisa Borowski & Jason Soria & Joseph Schofer & Amanda Stathopoulos, 2020. "Disparities in ridesourcing demand for mobility resilience: A multilevel analysis of neighborhood effects in Chicago, Illinois," Papers 2010.15889, arXiv.org.
    7. Nguyen-Phuoc, Duy Q. & Currie, Graham & De Gruyter, Chris & Young, William, 2018. "Transit user reactions to major service withdrawal – A behavioural study," Transport Policy, Elsevier, vol. 64(C), pages 29-37.
    8. Ha, Jaehyun & Lee, Sugie & Ko, Joonho, 2020. "Unraveling the impact of travel time, cost, and transit burdens on commute mode choice for different income and age groups," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 147-166.
    9. Scheiner, Joachim, 2020. "Changes in travel mode use over the life course with partner interactions in couple households," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 791-807.
    10. Liu, Rick & Palm, Matthew & Shalaby, Amer & Farber, Steven, 2020. "A social equity lens on bus bridging and ride-hailing responses to unplanned subway disruptions," Journal of Transport Geography, Elsevier, vol. 88(C).
    11. Parkes, Stephen D. & Jopson, Ann & Marsden, Greg, 2016. "Understanding travel behaviour change during mega-events: Lessons from the London 2012 Games," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 104-119.
    12. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    13. Lin, Teddy & Shalaby, Amer & Miller, Eric, 2016. "Transit User Behaviour in Response to Service Disruption: State of Knowledge," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319263, Transportation Research Forum.
    14. Joshua Auld & Hubert Ley & Omer Verbas & Nima Golshani & Josiane Bechara & Angela Fontes, 2020. "A stated-preference intercept survey of transit-rider response to service disruptions," Public Transport, Springer, vol. 12(3), pages 557-585, October.
    15. Nima Golshani & Ehsan Rahimi & Ramin Shabanpour & Kouros Mohammadian & Joshua Auld & Hubert Ley, 2020. "Passengers' Travel Behavior in Response to Unplanned Transit Disruptions," Papers 2001.01718, arXiv.org, revised Jul 2020.
    16. Spyropoulou, Ioanna, 2020. "Impact of public transport strikes on the road network: The case of Athens," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 651-665.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen-Phuoc, Duy Q. & Currie, Graham & De Gruyter, Chris & Young, William, 2018. "Transit user reactions to major service withdrawal – A behavioural study," Transport Policy, Elsevier, vol. 64(C), pages 29-37.
    2. Spyropoulou, Ioanna, 2020. "Impact of public transport strikes on the road network: The case of Athens," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 651-665.
    3. Stefan Bauernschuster & Timo Hener & Helmut Rainer, 2017. "When Labor Disputes Bring Cities to a Standstill: The Impact of Public Transit Strikes on Traffic, Accidents, Air Pollution, and Health," American Economic Journal: Economic Policy, American Economic Association, vol. 9(1), pages 1-37, February.
    4. Nazmul Arefin Khan & Muhammad Ahsanul Habib, 2018. "Evaluation of Preferences for Alternative Transportation Services and Loyalty towards Active Transportation during a Major Transportation Infrastructure Disruption," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    5. Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
    6. Munizaga, Marcela A. & Heydecker, Benjamin G. & Ortúzar, Juan de Dios, 2000. "Representation of heteroskedasticity in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 34(3), pages 219-240, April.
    7. Emma Strömblad & Lena Winslott Hiselius & Lena Smidfelt Rosqvist & Helena Svensson, 2021. "Adaptive Travel Behaviors to Cope with COVID-19: A Swedish Qualitative Study Focusing on Everyday Leisure Trips," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    8. Emily Moylan & Fletcher Foti & Alexander Skabardonis, 2016. "Observed and simulated traffic impacts from the 2013 Bay Area Rapid Transit strike," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(2), pages 162-179, March.
    9. Hasnine, Md Sami & Habib, Khandker Nurul, 2018. "What about the dynamics in daily travel mode choices? A dynamic discrete choice approach for tour-based mode choice modelling," Transport Policy, Elsevier, vol. 71(C), pages 70-80.
    10. Martin W. Adler & Jos N. van Ommeren, 2015. "Does Public Transit reduce Car Travel Externalities?," Tinbergen Institute Discussion Papers 15-011/VIII, Tinbergen Institute.
    11. Shanjiang Zhu & David M. Levinson, 2012. "Disruptions to Transportation Networks: A Review," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 5-20, Springer.
    12. Zhang, Junyi & Timmermans, Harry & Borgers, Aloys & Wang, Donggen, 2004. "Modeling traveler choice behavior using the concepts of relative utility and relative interest," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 215-234, March.
    13. Eugene J. S. Won, 2007. "—A Theoretical Investigation of the Effects of Similarity on Brand Choice Using the Elimination-by-Tree Model," Marketing Science, INFORMS, vol. 26(6), pages 868-875, 11-12.
    14. Marsden, Greg & Docherty, Iain, 2013. "Insights on disruptions as opportunities for transport policy change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 46-55.
    15. Adler, Martin W. & van Ommeren, Jos N., 2016. "Does public transit reduce car travel externalities? Quasi-natural experiments' evidence from transit strikes," Journal of Urban Economics, Elsevier, vol. 92(C), pages 106-119.
    16. Linda Court Salisbury & Fred M. Feinberg, 2010. "Alleviating the Constant Stochastic Variance Assumption in Decision Research: Theory, Measurement, and Experimental Test," Marketing Science, INFORMS, vol. 29(1), pages 1-17, 01-02.
    17. Nima Golshani & Ehsan Rahimi & Ramin Shabanpour & Kouros Mohammadian & Joshua Auld & Hubert Ley, 2020. "Passengers' Travel Behavior in Response to Unplanned Transit Disruptions," Papers 2001.01718, arXiv.org, revised Jul 2020.
    18. Duy Q. Nguyen-Phuoc & William Young & Graham Currie & Chris Gruyter, 2020. "Traffic congestion relief associated with public transport: state-of-the-art," Public Transport, Springer, vol. 12(2), pages 455-481, June.
    19. Ke Wang & Chandra R. Bhat & Xin Ye, 2023. "A multinomial probit analysis of shanghai commute mode choice," Transportation, Springer, vol. 50(4), pages 1471-1495, August.
    20. Greg Marsden, & Jillian Anable, & Chatterton, Tim & Docherty, Iain & Faulconbridge, James & Murray, Lesley & Roby, Helen & Shires, Jeremy, 2020. "Studying disruptive events: Innovations in behaviour, opportunities for lower carbon transport policy?," Transport Policy, Elsevier, vol. 94(C), pages 89-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:42:y:2015:i:6:p:933-949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.