IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v76y2019icp83-92.html
   My bibliography  Save this article

How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area

Author

Listed:
  • Younes, Hannah
  • Nasri, Arefeh
  • Baiocchi, Giovanni
  • Zhang, Lei

Abstract

Transportation disruptions offer opportunities to study how people adapt to using new modes of transportation and have important implications for transportation policy and planning. Bikeshare has emerged as a new popular mode of transportation in recent years as it offers a fast, easy, and reliable way to travel short distances, and for its convenience as a first- and last-mile mode to complement transit. It also offers many social, environmental, and health-related benefits and has the potential to promote low-carbon mobility. This study examines changes in bikeshare ridership due to rail transit closures in the Washington, D.C. area and investigates how promoting bikeshare systems in large metropolitan areas could be beneficial in cases of transit disruptions – regardless of the type, cause, and duration. We use disaggregate trip history data to analyze the impact of three different transit closures in 2016 lasting 7 to 25 days. The objective of this paper is to provide insight on how transit disruptions affect bikeshare use. An autoregressive Poisson time series model is used to estimate effects of transit closures on bikeshare activity. Kernel density estimation is applied to understand spatial changes in ridership from a week before, one year before, and after each closure. Results are compared both temporally and spatially and confirm that transit disruptions were associated with increased bikeshare ridership at the local level. Once the affected Metro stations reopened, bikeshare ridership returned to original levels. We conclude that when within 0.25 mile of a rail station and with a rail station spacing of <3 miles, bikeshare can be used as a mechanism for low-carbon mobility to complement transit.

Suggested Citation

  • Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
  • Handle: RePEc:eee:jotrge:v:76:y:2019:i:c:p:83-92
    DOI: 10.1016/j.jtrangeo.2019.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692318301807
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marsden, Greg & Docherty, Iain, 2013. "Insights on disruptions as opportunities for transport policy change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 46-55.
    2. David M. Levinson & Henry X. Liu & Michael Bell (ed.), 2012. "Network Reliability in Practice," Transportation Research, Economics and Policy, Springer, edition 1, number 978-1-4614-0947-2, June.
    3. Corcoran, Jonathan & Li, Tiebei & Rohde, David & Charles-Edwards, Elin & Mateo-Babiano, Derlie, 2014. "Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 292-305.
    4. van Exel, N. Job A. & Rietveld, Piet, 2001. "Public transport strikes and traveller behaviour," Transport Policy, Elsevier, vol. 8(4), pages 237-246, October.
    5. Schönfelder, Stefan & Axhausen, Kay W., 2003. "Activity spaces: measures of social exclusion?," Transport Policy, Elsevier, vol. 10(4), pages 273-286, October.
    6. Anastasia Pnevmatikou & Matthew Karlaftis & Konstantinos Kepaptsoglou, 2015. "Metro service disruptions: how do people choose to travel?," Transportation, Springer, vol. 42(6), pages 933-949, November.
    7. Biehl, Alec & Ermagun, Alireza & Stathopoulos, Amanda, 2018. "Community mobility MAUP-ing: A socio-spatial investigation of bikeshare demand in Chicago," Journal of Transport Geography, Elsevier, vol. 66(C), pages 80-90.
    8. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    9. Shanjiang Zhu & David M. Levinson, 2012. "Disruptions to Transportation Networks: A Review," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 5-20, Springer.
    10. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    11. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    12. Xie, Zhixiao & Yan, Jun, 2013. "Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach," Journal of Transport Geography, Elsevier, vol. 31(C), pages 64-71.
    13. Fokianos, Konstantinos & Tjøstheim, Dag, 2011. "Log-linear Poisson autoregression," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 563-578, March.
    14. Lo, Shih-Che & Hall, Randolph W., 2006. "Effects of the Los Angeles transit strike on highway congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 903-917, December.
    15. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    16. Noland, Robert B. & Smart, Michael J. & Guo, Ziye, 2016. "Bikeshare trip generation in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 164-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahram Heydari & Garyfallos Konstantinoudis & Abdul Wahid Behsoodi, 2021. "Effect of the COVID-19 pandemic on bike-sharing demand and hire time: Evidence from Santander Cycles in London," Papers 2107.11589, arXiv.org.
    2. Dehdari Ebrahimi, Zhila & Momenitabar, Mohsen & Nasri, Arefeh A. & Mattson, Jeremy, 2022. "Using a GIS-based spatial approach to determine the optimal locations of bikeshare stations: The case of Washington D.C," Transport Policy, Elsevier, vol. 127(C), pages 48-60.
    3. Lijun Chen & Haiping Zhang & Weike Lu, 2022. "Assessment of the Interconnection for Multi-Transfer Facilities: A Perspective from Coupling Coordination," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    4. Yang, Yuanxuan & Beecham, Roger & Heppenstall, Alison & Turner, Andy & Comber, Alexis, 2022. "Understanding the impacts of public transit disruptions on bikeshare schemes and cycling behaviours using spatiotemporal and graph-based analysis: A case study of four London Tube strikes," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Renata Żochowska & Marcin Jacek Kłos & Piotr Soczówka & Marcin Pilch, 2022. "Assessment of Accessibility of Public Transport by Using Temporal and Spatial Analysis," Sustainability, MDPI, vol. 14(23), pages 1-29, December.
    6. Schimohr, Katja & Scheiner, Joachim, 2021. "Spatial and temporal analysis of bike-sharing use in Cologne taking into account a public transit disruption," Journal of Transport Geography, Elsevier, vol. 92(C).
    7. Elisa Borowski & Jason Soria & Joseph Schofer & Amanda Stathopoulos, 2020. "Disparities in ridesourcing demand for mobility resilience: A multilevel analysis of neighborhood effects in Chicago, Illinois," Papers 2010.15889, arXiv.org.
    8. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.
    9. Younes, Hannah & Zou, Zhenpeng & Wu, Jiahui & Baiocchi, Giovanni, 2020. "Comparing the Temporal Determinants of Dockless Scooter-share and Station-based Bike-share in Washington, D.C," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 308-320.
    10. Kłos, Marcin Jacek & Sierpiński, Grzegorz, 2023. "Siting of electric vehicle charging stations method addressing area potential and increasing their accessibility," Journal of Transport Geography, Elsevier, vol. 109(C).
    11. Lu Cheng & Zhifu Mi & D’Maris Coffman & Jing Meng & Dining Liu & Dongfeng Chang, 2022. "The Role of Bike Sharing in Promoting Transport Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 567-585, September.
    12. Waitt, Gordon & Stanes, Elyse, 2022. "Reactivating commuter cycling: COVID-19 pandemic disruption to everyday transport choices in Sydney, Australia," Journal of Transport Geography, Elsevier, vol. 98(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younes, Hannah & Zou, Zhenpeng & Wu, Jiahui & Baiocchi, Giovanni, 2020. "Comparing the Temporal Determinants of Dockless Scooter-share and Station-based Bike-share in Washington, D.C," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 308-320.
    2. Wang, Jueyu & Lindsey, Greg, 2019. "Do new bike share stations increase member use: A quasi-experimental study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 1-11.
    3. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    4. Spyropoulou, Ioanna, 2020. "Impact of public transport strikes on the road network: The case of Athens," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 651-665.
    5. Jain, Taru & Wang, Xinyi & Rose, Geoffrey & Johnson, Marilyn, 2018. "Does the role of a bicycle share system in a city change over time? A longitudinal analysis of casual users and long-term subscribers," Journal of Transport Geography, Elsevier, vol. 71(C), pages 45-57.
    6. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    7. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    8. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    9. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    10. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    11. Elisa Borowski & Jason Soria & Joseph Schofer & Amanda Stathopoulos, 2020. "Disparities in ridesourcing demand for mobility resilience: A multilevel analysis of neighborhood effects in Chicago, Illinois," Papers 2010.15889, arXiv.org.
    12. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    13. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    14. Kim, Kyoungok, 2023. "Investigation of modal integration of bike-sharing and public transit in Seoul for the holders of 365-day passes," Journal of Transport Geography, Elsevier, vol. 106(C).
    15. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    16. Zhang, Ying & Thomas, Tom & Brussel, Mark & van Maarseveen, Martin, 2017. "Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China," Journal of Transport Geography, Elsevier, vol. 58(C), pages 59-70.
    17. Hu, Beibei & Zhong, Zhenfang & Zhang, Yanli & Sun, Yue & Jiang, Li & Dong, Xianlei & Sun, Huijun, 2022. "Understanding the influencing factors of bicycle-sharing demand based on residents’ trips," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    18. Georgia Aifadopoulou & Georgios Tsaples & Josep Maria Salanova Grau & Ioannis Mallidis & Nikolaos Sariannidis, 2022. "Management of resource allocation on vehicle-sharing schemes: the case of Thessaloniki’s bike-sharing system," Operational Research, Springer, vol. 22(2), pages 1001-1016, April.
    19. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    20. Nguyen-Phuoc, Duy Q. & Currie, Graham & De Gruyter, Chris & Young, William, 2018. "Transit user reactions to major service withdrawal – A behavioural study," Transport Policy, Elsevier, vol. 64(C), pages 29-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:76:y:2019:i:c:p:83-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.