IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v98y2022ics0966692321003082.html
   My bibliography  Save this article

Understanding the impacts of public transit disruptions on bikeshare schemes and cycling behaviours using spatiotemporal and graph-based analysis: A case study of four London Tube strikes

Author

Listed:
  • Yang, Yuanxuan
  • Beecham, Roger
  • Heppenstall, Alison
  • Turner, Andy
  • Comber, Alexis

Abstract

Understanding the interactions between different travel modes is crucial for improving urban transport resilience, especially during times of disruption and transit failure. As a flexible and sustainable travel mode, bikeshare schemes are able to solve “first/last” mile problems in urban transit as well as provide an alternative to motorised traffic. This paper uses OD (origin and destination) trip data from the London Cycle Hire Scheme and temporal docking station bike availability data to explore the impact of four separate London Underground (Tube) strikes on bikeshare usage and behaviours. The results suggest that bikeshare usage generally rises in response to Tube disruptions, but the extent and nature of this rise in use varies according to the type of disruption. A novel measure of station pressure suggests that the scheme very quickly reaches saturated capacity and is unusable in certain parts of London during disruptions. A graph-based analysis reveals several changes in OD flow structures. This implies a modal shift from Tube to bikeshare and a change of route behaviours among bikeshare users. Weekday Tube strikes bring new behaviours and new OD pairs to the bike flow structures, whilst for weekend strikes existing patterns are consolidated. The corollary is that more heterogenous OD trip patterns are introduced by higher volumes of commuting trips and intense competition of cycles/docks. Cyclists are forced into using alternative (second or third preference) docking stations with new behaviours, and possibly users, as journeys that would otherwise be made via the Tube are made via bikeshare. This work comprehensively presents and compares the impacts of Tube strikes under varied circumstances and offers a detailed understanding of the changed cycling behaviours that could be used in transport planning and management.

Suggested Citation

  • Yang, Yuanxuan & Beecham, Roger & Heppenstall, Alison & Turner, Andy & Comber, Alexis, 2022. "Understanding the impacts of public transit disruptions on bikeshare schemes and cycling behaviours using spatiotemporal and graph-based analysis: A case study of four London Tube strikes," Journal of Transport Geography, Elsevier, vol. 98(C).
  • Handle: RePEc:eee:jotrge:v:98:y:2022:i:c:s0966692321003082
    DOI: 10.1016/j.jtrangeo.2021.103255
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692321003082
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2021.103255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2016. "Bike-share rebalancing strategies, patterns, and purpose," Journal of Transport Geography, Elsevier, vol. 55(C), pages 22-39.
    2. Shaun Larcom & Ferdinand Rauch & Tim Willems, 2017. "The Benefits of Forced Experimentation: Striking Evidence from the London Underground Network," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 2019-2055.
    3. Dapeng Yu & Jie Yin & Robert L. Wilby & Stuart N. Lane & Jeroen C. J. H. Aerts & Ning Lin & Min Liu & Hongyong Yuan & Jianguo Chen & Christel Prudhomme & Mingfu Guan & Avinoam Baruch & Charlie W. D. J, 2020. "Disruption of emergency response to vulnerable populations during floods," Nature Sustainability, Nature, vol. 3(9), pages 728-736, September.
    4. Stuart Oldham & Ben Fulcher & Linden Parkes & Aurina Arnatkevic̆iūtė & Chao Suo & Alex Fornito, 2019. "Consistency and differences between centrality measures across distinct classes of networks," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    5. Stefan Bauernschuster & Timo Hener & Helmut Rainer, 2017. "When Labor Disputes Bring Cities to a Standstill: The Impact of Public Transit Strikes on Traffic, Accidents, Air Pollution, and Health," American Economic Journal: Economic Policy, American Economic Association, vol. 9(1), pages 1-37, February.
    6. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    7. Wilson, Martha C., 2007. "The impact of transportation disruptions on supply chain performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 295-320, July.
    8. Lovelace, Robin & Beecham, Roger & Heinen, Eva & Vidal Tortosa, Eugeni & Yang, Yuanxuan & Slade, Chris & Roberts, Antonia, 2020. "Is the London Cycle Hire Scheme becoming more inclusive? An evaluation of the shifting spatial distribution of uptake based on 70 million trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 1-15.
    9. Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
    10. Stefan Bauernschuster & Timo Hener & Helmut Rainer, 2017. "When Labor Disputes Bring Cities to a Standstill: The Impact of Public Transit Strikes on Traffic, Accidents, Air Pollution, and Health," American Economic Journal: Economic Policy, American Economic Association, vol. 9(1), pages 1-37, February.
    11. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    12. Nello-Deakin, Samuel, 2020. "Environmental determinants of cycling: Not seeing the forest for the trees?," Journal of Transport Geography, Elsevier, vol. 85(C).
    13. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    14. Shaheen, Susan PhD & Martin, Elliot PhD & Cohen, Adam, 2013. "Public Bikesharing and Modal Shift Behavior: A Comparative Study of Early Bikesharing Systems in North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7010k9p3, Institute of Transportation Studies, UC Berkeley.
    15. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    16. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beestermöller, Matthias Gerhard & Jessen-Thiesen, Levke & Sandkamp, Alexander-Nikolai, 2023. "Striking evidence: The impact of railway strikes on competition from intercity bus services in Germany," Kiel Working Papers 2251, Kiel Institute for the World Economy (IfW Kiel).
    2. Roger Beecham & Yuanxuan Yang & Caroline Tait & Robin Lovelace, 2023. "Connected bikeability in London: Which localities are better connected by bike and does this matter?," Environment and Planning B, , vol. 50(8), pages 2103-2117, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeran Sun & Amin Mobasheri & Xuke Hu & Weikai Wang, 2017. "Investigating Impacts of Environmental Factors on the Cycling Behavior of Bicycle-Sharing Users," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    2. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    3. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    5. Davis, Lucas W., 2021. "Estimating the price elasticity of demand for subways: Evidence from Mexico," Regional Science and Urban Economics, Elsevier, vol. 87(C).
    6. Lu Cheng & Zhifu Mi & D’Maris Coffman & Jing Meng & Dining Liu & Dongfeng Chang, 2022. "The Role of Bike Sharing in Promoting Transport Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 567-585, September.
    7. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    8. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    9. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    10. Spyropoulou, Ioanna, 2020. "Impact of public transport strikes on the road network: The case of Athens," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 651-665.
    11. Qiu, Waishan & Chang, Hector, 2021. "The interplay between dockless bikeshare and bus for small-size cities in the US: A case study of Ithaca," Journal of Transport Geography, Elsevier, vol. 96(C).
    12. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    13. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    14. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    15. Matthias Beestermöller & Levke Jessen-Thiesen & Alexander Sandkamp & Alexander-Nikolai Sandkamp, 2023. "Striking Evidence: The Impact of Railway Strikes on Competition from Intercity Bus Services in Germany," CESifo Working Paper Series 10483, CESifo.
    16. Ainhoa Serna & Tomas Ruiz & Jon Kepa Gerrikagoitia & Rosa Arroyo, 2019. "Identification of Enablers and Barriers for Public Bike Share System Adoption using Social Media and Statistical Models," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    17. Fabio Kon & Éderson Cássio Ferreira & Higor Amario Souza & Fábio Duarte & Paolo Santi & Carlo Ratti, 2022. "Abstracting mobility flows from bike-sharing systems," Public Transport, Springer, vol. 14(3), pages 545-581, October.
    18. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    19. Marcin Jacek Kłos & Grzegorz Sierpiński, 2021. "Building a Model of Integration of Urban Sharing and Public Transport Services," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    20. Elisa Borowski & Jason Soria & Joseph Schofer & Amanda Stathopoulos, 2020. "Disparities in ridesourcing demand for mobility resilience: A multilevel analysis of neighborhood effects in Chicago, Illinois," Papers 2010.15889, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:98:y:2022:i:c:s0966692321003082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.