IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v121y2019icp1-11.html
   My bibliography  Save this article

Do new bike share stations increase member use: A quasi-experimental study

Author

Listed:
  • Wang, Jueyu
  • Lindsey, Greg

Abstract

As the number of bike share programs across the world has grown, studies of bike programs and operations have proliferated. Most empirical studies of bike share demand have included analyses of station use while a limited number of studies have investigated member behavior. Moreover, a limitation of this research is that the most research designs have been cross-sectional and therefore unable to establish causality. To address this limitation, we employ a quasi-experimental, difference-in-difference modeling approach using a six-year panel data set of members’ bike share trips from 2010 to 2015 in Minneapolis-St. Paul, Minnesota. This research design takes advantage of changes in the bike share network over time to establish treatment and control groups and test the significance of effects of changes in accessibility on the frequency of individual member’s use of bike share. Improvements in accessibility are measured as a reduction in distance to stations resulting from placement of new stations or relocation of old stations. We find a significant negative impact of distance on the frequency of use and that the effects of increasing bike share accessibility are larger in areas with denser bike share services. Specifically, members for whom access improved (i.e., distance decreased) were significantly more likely to increase the frequency of use than members for whom access remained the same. Moreover, by developing different models, we show the effects of distance are heterogeneous and vary with different built environment contexts. Members who live in areas with higher population density and a higher percentage of retail land use tended to increase their bike share use more. Our results indicate that improvements in physical accessibility may not result in practically meaningful changes in the frequency of use in all cases and imply that multi-faceted strategies for increasing use may be needed.

Suggested Citation

  • Wang, Jueyu & Lindsey, Greg, 2019. "Do new bike share stations increase member use: A quasi-experimental study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 1-11.
  • Handle: RePEc:eee:transa:v:121:y:2019:i:c:p:1-11
    DOI: 10.1016/j.tra.2019.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585641731546X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corcoran, Jonathan & Li, Tiebei & Rohde, David & Charles-Edwards, Elin & Mateo-Babiano, Derlie, 2014. "Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 292-305.
    2. Goodman, Anna & Cheshire, James, 2014. "Inequalities in the London bicycle sharing system revisited: impacts of extending the scheme to poorer areas but then doubling prices," Journal of Transport Geography, Elsevier, vol. 41(C), pages 272-279.
    3. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    4. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    5. Julie Clark & Angela Curl, 2016. "Bicycle and Car Share Schemes as Inclusive Modes of Travel? A Socio-Spatial Analysis in Glasgow, UK," Social Inclusion, Cogitatio Press, vol. 4(3), pages 83-99.
    6. Campbell, Kayleigh B. & Brakewood, Candace, 2017. "Sharing riders: How bikesharing impacts bus ridership in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 264-282.
    7. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    8. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Mazzei, Armando, 2014. "Barriers to bikesharing: an analysis from Melbourne and Brisbane," Journal of Transport Geography, Elsevier, vol. 41(C), pages 325-337.
    9. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Determining the role of bicycle sharing system infrastructure installation decision on usage: Case study of montreal BIXI system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 685-698.
    10. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    11. Gustavo Romanillos & Borja Moya-Gómez & Martin Zaltz-Austwick & Patxi J. Lamíquiz-Daudén, 2018. "The pulse of the cycling city: visualising Madrid bike share system GPS routes and cycling flow," Journal of Maps, Taylor & Francis Journals, vol. 14(1), pages 34-43, January.
    12. Noland, Robert B. & Smart, Michael J. & Guo, Ziye, 2016. "Bikeshare trip generation in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 164-181.
    13. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    14. O’Brien, Oliver & Cheshire, James & Batty, Michael, 2014. "Mining bicycle sharing data for generating insights into sustainable transport systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 262-273.
    15. Elliot Fishman & Simon Washington & Narelle Haworth, 2013. "Bike Share: A Synthesis of the Literature," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 148-165, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung-Jung Chang & Chia-Li Lin, 2023. "Determining the Sustainable Development Strategies and Adoption Paths for Public Bike-Sharing Service Systems (PBSSSs) under Various Users’ Considerations," Mathematics, MDPI, vol. 11(5), pages 1-30, February.
    2. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng & Liu, Ronghui, 2022. "A two-stage robust approach to integrated station location and rebalancing vehicle service design in bike-sharing systems," European Journal of Operational Research, Elsevier, vol. 298(3), pages 915-938.
    3. Katarzyna Turoń & Andrzej Kubik & Feng Chen & Hualan Wang & Bogusław Łazarz, 2020. "A Holistic Approach to Electric Shared Mobility Systems Development—Modelling and Optimization Aspects," Energies, MDPI, vol. 13(21), pages 1-19, November.
    4. Ding, Hongliang & Lu, Yuhuan & Sze, N.N. & Li, Haojie, 2022. "Effect of dockless bike-sharing scheme on the demand for London Cycle Hire at the disaggregate level using a deep learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 150-163.
    5. Zhang, Yingheng & Li, Haojie & Ren, Gang, 2022. "Quantifying the social impacts of the London Night Tube with a double/debiased machine learning based difference-in-differences approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 288-303.
    6. Biondi, Beatrice & Romanowska, Aleksandra & Birr, Krystian, 2022. "Impact evaluation of a cycling promotion campaign using daily bicycle counters data: The case of Cycling May in Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 337-351.
    7. Klar, Ben & Lee, Jinhyung & Long, Jed A. & Diab, Ehab, 2023. "The impacts of accessibility measure choice on public transit project evaluation: A comparative study of cumulative, gravity-based, and hybrid approaches," Journal of Transport Geography, Elsevier, vol. 106(C).
    8. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    9. Xiaozhou Ye, 2022. "Bike-Sharing Adoption in Cross-National Contexts: An Empirical Research on the Factors Affecting Users’ Intentions," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    10. Mallikarjun Patil & Bandhan Bandhu Majumdar & Prasanta Kumar Sahu & Long T. Truong, 2021. "Evaluation of Prospective Users’ Choice Decision toward Electric Two-Wheelers Using a Stated Preference Survey: An Indian Perspective," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    11. Fan Yang & Fan Ding & Xu Qu & Bin Ran, 2019. "Estimating Urban Shared-Bike Trips with Location-Based Social Networking Data," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    12. Wang, Kailai & Chen, Yu-Jen, 2020. "Joint analysis of the impacts of built environment on bikeshare station capacity and trip attractions," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    14. Katarzyna Turoń & Andrzej Kubik & Feng Chen, 2021. "Electric Shared Mobility Services during the Pandemic: Modeling Aspects of Transportation," Energies, MDPI, vol. 14(9), pages 1-19, May.
    15. Lovelace, Robin & Beecham, Roger & Heinen, Eva & Vidal Tortosa, Eugeni & Yang, Yuanxuan & Slade, Chris & Roberts, Antonia, 2020. "Is the London Cycle Hire Scheme becoming more inclusive? An evaluation of the shifting spatial distribution of uptake based on 70 million trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    2. Jain, Taru & Wang, Xinyi & Rose, Geoffrey & Johnson, Marilyn, 2018. "Does the role of a bicycle share system in a city change over time? A longitudinal analysis of casual users and long-term subscribers," Journal of Transport Geography, Elsevier, vol. 71(C), pages 45-57.
    3. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    4. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    5. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    6. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    7. Médard de Chardon, Cyrille & Caruso, Geoffrey, 2015. "Estimating bike-share trips using station level data," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 260-279.
    8. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    9. Wang, Jueyu & Lindsey, Greg, 2019. "Neighborhood socio-demographic characteristics and bike share member patterns of use," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    10. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    11. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    12. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    13. Maas, Suzanne & Attard, Maria & Caruana, Mark Anthony, 2020. "Assessing spatial and social dimensions of shared bicycle use in a Southern European island context: The case of Las Palmas de Gran Canaria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 81-97.
    14. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    15. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Elsevier, vol. 54(C), pages 218-227.
    16. Bakó, Barna & Isztin, Péter & Berezvai, Zombor & Cseke, Petra Zsuzsanna, 2019. "Infrastruktúra-bővítés világversenyek idején. A Mol Bubi esete a FINA világbajnoksággal [Infrastructural investments for international sports events. Network expansion of the MOL Bubi bicycle-shari," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 4-21.
    17. Namkung, Ok Stella & Park, Jonghan & Ko, Joonho, 2023. "Public bike users’ annual travel distance: Findings from combined data of user survey and annual rental records," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    18. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    19. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    20. Xiaolu Zhou, 2015. "Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:121:y:2019:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.