Advanced Search
MyIDEAS: Login to save this article or follow this journal

Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks

Contents:

Author Info

  • Elnaz Miandoabchi
  • Reza Farahani

    ()

  • Wout Dullaert
  • W. Szeto
Registered author(s):

    Abstract

    This paper addresses a bi-modal multi-objective discrete urban road network design problem with automobile and bus flow interaction. The problem considers the concurrent urban road and bus network design in which the authorities play a major role in designing bus network topology. The road network design deals with the decision making for new street constructions, lane additions to existing streets, lane allocations for two-way streets, and the orientations and locations of one-way streets. The bus network design is performed by keeping the terminal stations of the existing bus lines unchanged and redesigning the forth and back routes of each line. Four measures, namely user benefit, the demand coverage of the bus network, the demand share of the bus mode, and the average travel generalized cost of bus passengers, are used to evaluate the network design scenarios. The problem is formulated as a multi-objective optimization model in which a modal-split/assignment model is included to depict the mode and route choice behaviors of travelers. The model is solved by the hybrid genetic algorithm and the hybrid clonal selection algorithm. The performance of these algorithms is presented and investigated by solving a number of test networks. Copyright Springer Science+Business Media, LLC 2012

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1007/s11067-011-9163-x
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Springer in its journal Networks and Spatial Economics.

    Volume (Year): 12 (2012)
    Issue (Month): 3 (September)
    Pages: 441-480

    as in new window
    Handle: RePEc:kap:netspa:v:12:y:2012:i:3:p:441-480

    Contact details of provider:
    Web page: http://www.springerlink.com/link.asp?id=106607

    Related research

    Keywords: Bimodal; Transit network design; Road network design; Multi-objective optimization; Elastic demand; Hybrid metaheuristics;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Lo, Hong K. & Szeto, W.Y., 2009. "Time-dependent transport network design under cost-recovery," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 142-158, January.
    2. Hossain Poorzahedy & Farhad Abulghasemi, 2005. "Application of Ant System to network design problem," Transportation, Springer, vol. 32(3), pages 251-273, 05.
    3. Ying, Jiang Qian & Yang, Hai, 2005. "Sensitivity analysis of stochastic user equilibrium flows in a bi-modal network with application to optimal pricing," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 769-795, November.
    4. Ampol Karoonsoontawong & Steven Waller, 2010. "Integrated Network Capacity Expansion and Traffic Signal Optimization Problem: Robust Bi-level Dynamic Formulation," Networks and Spatial Economics, Springer, vol. 10(4), pages 525-550, December.
    5. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    6. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2002. "Network pricing optimization in multi-user and multimodal context with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 779-798, November.
    7. Ferrari, Paolo, 1999. "A model of urban transport management," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 43-61, February.
    8. Clegg, Janet & Smith, Mike & Xiang, Yanling & Yarrow, Robert, 2001. "Bilevel programming applied to optimising urban transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 41-70, January.
    9. D'Acierno, Luca & Gallo, Mariano & Montella, Bruno, 2006. "Optimisation models for the urban parking pricing problem," Transport Policy, Elsevier, vol. 13(1), pages 34-48, January.
    10. Poorzahedy, Hossain & Rouhani, Omid M., 2007. "Hybrid meta-heuristic algorithms for solving network design problem," European Journal of Operational Research, Elsevier, vol. 182(2), pages 578-596, October.
    11. Satish Ukkusuri & S. Waller, 2008. "Linear Programming Models for the User and System Optimal Dynamic Network Design Problem: Formulations, Comparisons and Extensions," Networks and Spatial Economics, Springer, vol. 8(4), pages 383-406, December.
    12. Ceder, Avishai & Wilson, Nigel H. M., 1986. "Bus network design," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 331-344, August.
    13. Gao, Ziyou & Sun, Huijun & Shan, Lian Long, 2004. "A continuous equilibrium network design model and algorithm for transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 235-250, March.
    14. Zhi-Chun Li & William Lam & S. Wong, 2009. "The Optimal Transit Fare Structure under Different Market Regimes with Uncertainty in the Network," Networks and Spatial Economics, Springer, vol. 9(2), pages 191-216, June.
    15. Dung-Ying Lin & Ampol Karoonsoontawong & S. Waller, 2011. "A Dantzig-Wolfe Decomposition Based Heuristic Scheme for Bi-level Dynamic Network Design Problem," Networks and Spatial Economics, Springer, vol. 11(1), pages 101-126, March.
    16. Kenetsu Uchida & Agachai Sumalee & David Watling & Richard Connors, 2007. "A Study on Network Design Problems for Multi-modal Networks by Probit-based Stochastic User Equilibrium," Networks and Spatial Economics, Springer, vol. 7(3), pages 213-240, September.
    17. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    18. Szeto, W.Y. & Wu, Yongzhong, 2011. "A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong," European Journal of Operational Research, Elsevier, vol. 209(2), pages 141-155, March.
    19. Lo, Hong K. & Yip, C. W. & Wan, K. H., 2003. "Modeling transfer and non-linear fare structure in multi-modal network," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 149-170, February.
    20. Szeto, W.Y. & Lo, Hong K., 2008. "Time-dependent transport network improvement and tolling strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 376-391, February.
    21. Hamdouch, Younes & Florian, Michael & Hearn, Donald W. & Lawphongpanich, Siriphong, 2007. "Congestion pricing for multi-modal transportation systems," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 275-291, March.
    22. Nagurney, Anna B., 1984. "Comparative tests of multimodal traffic equilibrium methods," Transportation Research Part B: Methodological, Elsevier, vol. 18(6), pages 469-485, December.
    23. Florian, Michael & Spiess, Heinz, 1982. "The convergence of diagonalization algorithms for asymmetric network equilibrium problems," Transportation Research Part B: Methodological, Elsevier, vol. 16(6), pages 477-483, December.
    24. Dantzig, George B. & Harvey, Roy P. & Lansdowne, Zachary F. & Robinson, David W. & Maier, Steven F., 1979. "Formulating and solving the network design problem by decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 13(1), pages 5-17, March.
    25. Szeto, W.Y. & Lo, Hong K., 2006. "Transportation network improvement and tolling strategies: The issue of intergeneration equity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 227-243, March.
    26. Long, Jiancheng & Gao, Ziyou & Zhang, Haozhi & Szeto, W.Y., 2010. "A turning restriction design problem in urban road networks," European Journal of Operational Research, Elsevier, vol. 206(3), pages 569-578, November.
    27. Poorzahedy, Hossain & Turnquist, Mark A., 1982. "Approximate algorithms for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 16(1), pages 45-55, February.
    28. Friesz, Terry L. & Anandalingam, G. & Mehta, Nihal J. & Nam, Keesung & Shah, Samir J. & Tobin, Roger L., 1993. "The multiobjective equilibrium network design problem revisited: A simulated annealing approach," European Journal of Operational Research, Elsevier, vol. 65(1), pages 44-57, February.
    29. Ben-Ayed, Omar & Boyce, David E. & Blair, Charles E., 1988. "A general bilevel linear programming formulation of the network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 22(4), pages 311-318, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    2. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:12:y:2012:i:3:p:441-480. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.