IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v77y2015icp17-37.html
   My bibliography  Save this article

Mathematical programming formulations for transit network design

Author

Listed:
  • Cancela, Héctor
  • Mauttone, Antonio
  • Urquhart, María E.

Abstract

In this work, we study the transit network design problem from the perspective of mathematical programming. More precisely, we consider the problem of defining the number and itinerary of bus routes and their frequencies, for a public transportation system. In this problem, the routes should be defined in terms of a given infrastructure of streets and stops and should cover a given origin–destination demand. The solution (routes and frequencies) should be convenient for the users and the operators. We review existing mathematical programming formulations and propose a new one, paying attention to the following aspects of public transportation systems, that are identified as key elements in order to have a realistic model: (a) the interest of the users, (b) the interest of the operators, (c) the behavior of the users, and (d) constraints regarding transfer, infrastructure and bus capacity. First, we discuss the formulations existing on the literature, in terms of the aspects mentioned above. Second, we propose a mixed integer linear programming (MILP) formulation, that incorporates the waiting time and the existence of multiple lines in the behavior of the users. We validate the proposed formulation using several cases, including a real one. Also, we compare the obtained results against results from the existing literature. In order to include transfer, infrastructure and bus capacity constraints, we propose an extension to the formulation and we discuss its impact in the structure of the model, based on concepts of bi-level mathematical programming. The mathematical formulations developed contribute towards a more realistic modeling effort, taking into account important aspects of the real system which were not included in previous proposals in the literature.

Suggested Citation

  • Cancela, Héctor & Mauttone, Antonio & Urquhart, María E., 2015. "Mathematical programming formulations for transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 17-37.
  • Handle: RePEc:eee:transb:v:77:y:2015:i:c:p:17-37
    DOI: 10.1016/j.trb.2015.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515000491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Fang & Zeng, Xiaogang, 2008. "Optimization of transit route network, vehicle headways and timetables for large-scale transit networks," European Journal of Operational Research, Elsevier, vol. 186(2), pages 841-855, April.
    2. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    3. Zhao, Jiamin & Dessouky, Maged, 2008. "Service capacity design problems for mobility allowance shuttle transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 135-146, February.
    4. Cepeda, M. & Cominetti, R. & Florian, M., 2006. "A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 437-459, July.
    5. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    6. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    7. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    8. Gao, Ziyou & Sun, Huijun & Shan, Lian Long, 2004. "A continuous equilibrium network design model and algorithm for transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 235-250, March.
    9. Quentin K. Wan & Hong K. Lo, 2009. "Congested multimodal transit network design," Public Transport, Springer, vol. 1(3), pages 233-251, August.
    10. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    11. Enrique Fernández L., J. & de Cea Ch., Joaquin & Malbran, R. Henry, 2008. "Demand responsive urban public transport system design: Methodology and application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(7), pages 951-972, August.
    12. Schmid, Verena, 2014. "Hybrid large neighborhood search for the bus rapid transit route design problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 427-437.
    13. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    14. Asadi Bagloee, Saeed & Ceder, Avishai (Avi), 2011. "Transit-network design methodology for actual-size road networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1787-1804.
    15. José R. Correa & Andreas S. Schulz & Nicolás E. Stier-Moses, 2004. "Selfish Routing in Capacitated Networks," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 961-976, November.
    16. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    17. Belgacem Bouzaïene-Ayari & Michel Gendreau & Sang Nguyen, 2001. "Modeling Bus Stops in Transit Networks: A Survey and New Formulations," Transportation Science, INFORMS, vol. 35(3), pages 304-321, August.
    18. Jose L. Walteros & Andrés L. Medaglia & Germán Riaño, 2015. "Hybrid Algorithm for Route Design on Bus Rapid Transit Systems," Transportation Science, INFORMS, vol. 49(1), pages 66-84, February.
    19. Joaquín de Cea & Enrique Fernández, 1993. "Transit Assignment for Congested Public Transport Systems: An Equilibrium Model," Transportation Science, INFORMS, vol. 27(2), pages 133-147, May.
    20. Nielsen, Otto Anker, 2000. "A stochastic transit assignment model considering differences in passengers utility functions," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 377-402, June.
    21. Claude Chriqui & Pierre Robillard, 1975. "Common Bus Lines," Transportation Science, INFORMS, vol. 9(2), pages 115-121, May.
    22. Lownes, Nicholas E. & Machemehl, Randy B., 2010. "Exact and heuristic methods for public transit circulator design," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 309-318, February.
    23. Homero Larrain & Juan Muñoz, 2008. "Public Transit Corridor Assignment Assuming Congestion Due to Passenger Boarding and Alighting," Networks and Spatial Economics, Springer, vol. 8(2), pages 241-256, September.
    24. Ceder, Avishai & Wilson, Nigel H. M., 1986. "Bus network design," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 331-344, August.
    25. Guan, J.F. & Yang, Hai & Wirasinghe, S.C., 2006. "Simultaneous optimization of transit line configuration and passenger line assignment," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 885-902, December.
    26. Leiva, Carola & Muñoz, Juan Carlos & Giesen, Ricardo & Larrain, Homero, 2010. "Design of limited-stop services for an urban bus corridor with capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1186-1201, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayan Bevrani & Robert L. Burdett & Ashish Bhaskar & Prasad K. D. V. Yarlagadda, 2020. "A multi commodity flow model incorporating flow reduction functions," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 693-723, September.
    2. Camporeale, Rosalia & Caggiani, Leonardo & Ottomanelli, Michele, 2019. "Modeling horizontal and vertical equity in the public transport design problem: A case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 184-206.
    3. Bevrani, Bayan & Burdett, Robert L. & Bhaskar, Ashish & Yarlagadda, Prasad K.D.V., 2017. "A capacity assessment approach for multi-modal transportation systems," European Journal of Operational Research, Elsevier, vol. 263(3), pages 864-878.
    4. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    5. Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.
    6. Greening, Lacy M. & Dahan, Mathieu & Erera, Alan L., 2023. "Lead-Time-Constrained Middle-Mile Consolidation Network Design with Fixed Origins and Destinations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    7. Philipp Heyken Soares, 2021. "Zone-based public transport route optimisation in an urban network," Public Transport, Springer, vol. 13(1), pages 197-231, March.
    8. Fatnassi, Ezzeddine & Chaouachi, Jouhaina & Klibi, Walid, 2015. "Planning and operating a shared goods and passengers on-demand rapid transit system for sustainable city-logistics," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 440-460.
    9. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    10. Adrian Barchański & Renata Żochowska & Marcin Jacek Kłos, 2022. "A Method for the Identification of Critical Interstop Sections in Terms of Introducing Electric Buses in Public Transport," Energies, MDPI, vol. 15(20), pages 1-37, October.
    11. Peng Wu & Ling Xu & Ada Che & Feng Chu, 2022. "A bi-objective decision model and method for the integrated optimization of bus line planning and lane reservation," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1298-1327, July.
    12. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    13. Prokudin Georgii & Chupaylenko Alexey & Lebid Viktoriia & Khobotnia Tetiana, 2020. "Development of methods to increase the efficiency of road transportation by international transport corridors," Technology audit and production reserves, Socionet;Technology audit and production reserves, vol. 4(4(54)), pages 34-36.
    14. Mohsen Momenitabar & Jeremy Mattson, 2021. "A Multi-Objective Meta-Heuristic Approach to Improve the Bus Transit Network: A Case Study of Fargo-Moorhead Area," Sustainability, MDPI, vol. 13(19), pages 1-25, September.
    15. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    16. Cervantes-Sanmiguel, K.I. & Chavez-Hernandez, M.V. & Ibarra-Rojas, O.J., 2023. "Analyzing the trade-off between minimizing travel times and reducing monetary costs for users in the transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 142-161.
    17. Javier Duran & Lorena Pradenas & Victor Parada, 2019. "Transit network design with pollution minimization," Public Transport, Springer, vol. 11(1), pages 189-210, June.
    18. Xuekai Cen & Kanghui Ren & Yiying Cai & Qun Chen, 2023. "Designing Flexible-Bus System with Ad-Hoc Service Using Travel-Demand Clustering," Mathematics, MDPI, vol. 11(4), pages 1-27, February.
    19. Yiduo Huang & Zuojun Max Shen, 2021. "Optimizing timetable and network reopen plans for public transportation networks during a COVID19-like pandemic," Papers 2109.03940, arXiv.org.
    20. Duran-Micco, Javier & Vermeir, Evert & Vansteenwegen, Pieter, 2020. "Considering emissions in the transit network design and frequency setting problem with a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 282(2), pages 580-592.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    2. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    3. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    4. Tian, Qingyun & Wang, David Z.W. & Lin, Yun Hui, 2021. "Service operation design in a transit network with congested common lines," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 81-102.
    5. Philipp Heyken Soares, 2021. "Zone-based public transport route optimisation in an urban network," Public Transport, Springer, vol. 13(1), pages 197-231, March.
    6. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    7. Canca, David & Andrade-Pineda, José Luis & De los Santos, Alicia & Calle, Marcos, 2018. "The Railway Rapid Transit frequency setting problem with speed-dependent operation costs," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 494-519.
    8. Wang, David Z.W. & Nayan, Ashish & Szeto, W.Y., 2018. "Optimal bus service design with limited stop services in a travel corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 70-86.
    9. Kumar, Pramesh & Khani, Alireza, 2022. "Planning of integrated mobility-on-demand and urban transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 499-521.
    10. Arbex, Renato Oliveira & da Cunha, Claudio Barbieri, 2015. "Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 355-376.
    11. Canca, David & Barrena, Eva & De-Los-Santos, Alicia & Andrade-Pineda, José Luis, 2016. "Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 251-267.
    12. Suman, Hemant & Larrain, Homero & Muñoz, Juan Carlos, 2021. "The impact of using a naïve approach in the limited-stop bus service design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 45-61.
    13. Ren, Hualing & Song, Yingjie & Long, Jiancheng & Si, Bingfeng, 2021. "A new transit assignment model based on line and node strategies," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 121-142.
    14. Li, Guoyuan & Chen, Anthony, 2023. "Strategy-based transit stochastic user equilibrium model with capacity and number-of-transfers constraints," European Journal of Operational Research, Elsevier, vol. 305(1), pages 164-183.
    15. Martínez, Héctor & Mauttone, Antonio & Urquhart, María E., 2014. "Frequency optimization in public transportation systems: Formulation and metaheuristic approach," European Journal of Operational Research, Elsevier, vol. 236(1), pages 27-36.
    16. Abdulkerim Benli & İbrahim Akgün, 2023. "A Multi-Objective Mathematical Programming Model for Transit Network Design and Frequency Setting Problem," Mathematics, MDPI, vol. 11(21), pages 1-23, October.
    17. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    18. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    19. Soto, Guillermo & Larrain, Homero & Muñoz, Juan Carlos, 2017. "A new solution framework for the limited-stop bus service design problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 67-85.
    20. Zhang, Yu & Tang, Jiafu, 2018. "Itinerary planning with time budget for risk-averse travelers," European Journal of Operational Research, Elsevier, vol. 267(1), pages 288-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:77:y:2015:i:c:p:17-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.