IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v55y2021i3d10.1007_s11123-021-00599-9.html
   My bibliography  Save this article

Performance measurement and joint production of intended and unintended outputs

Author

Listed:
  • Finn R. Førsund

    (University of Oslo)

Abstract

The generation of unintended residuals when producing intended outputs is the key factor behind our serious problems with pollution. The way this joint production is modelled is therefore of crucial importance for our understanding and empirical efforts to change economic activities in order to reduce harmful residuals. Estimation of efficiency and productivity when producing both intended and unintended outputs has emerged as an important research strand. The most popular models in the field are based on weak disposability of the two types of outputs together and null-jointness introduced by Shephard. The purpose of the paper is to show that these model types are built on some questionable assumptions. An alternative model based on the production theory of Frisch introduces technical jointness for the case when the unintended output is unavoidable. The materials balance based on physical laws tells us that when material inputs are used unintended outputs are unavoidable. The modelling of joint production must therefore reflect this. The production of the two types of outputs occurs simultaneously. It is the maximisation of intended outputs for given inputs that engineers are striving at to achieve. The production functions for intended and unintended outputs are linked through common use of inputs. However, separate functions for the two types of output can be estimated because the intended outputs are independent of the unintended ones and vice versa, facilitating calculating separate efficiency and productivity measures using non-parametric DEA methods.

Suggested Citation

  • Finn R. Førsund, 2021. "Performance measurement and joint production of intended and unintended outputs," Journal of Productivity Analysis, Springer, vol. 55(3), pages 157-175, June.
  • Handle: RePEc:kap:jproda:v:55:y:2021:i:3:d:10.1007_s11123-021-00599-9
    DOI: 10.1007/s11123-021-00599-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-021-00599-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-021-00599-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    2. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    3. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    4. Sushama Murty & Resham Nagpal, "undated". "Measuring output-based technical efficiency of Indian coal-based thermal power plants: A by-production approach," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-07, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    5. Thijs ten Raa & William H. Greene (ed.), 2019. "The Palgrave Handbook of Economic Performance Analysis," Springer Books, Springer, number 978-3-030-23727-1, December.
    6. Pethig, Rudiger, 2006. "Non-linear production, abatement, pollution and materials balance reconsidered," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 185-204, March.
    7. Sushama Murty, 2015. "On the properties of an emission-generating technology and its parametric representation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 243-282, October.
    8. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    9. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    10. Arjomandi, Amir & Dakpo, K. Hervé & Seufert, Juergen Heinz, 2018. "Have Asian airlines caught up with European Airlines? A by-production efficiency analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 389-403.
    11. Stefan Baumgärtner & Jakob de Swaan Arons, 2003. "Necessity and Inefficiency in the Generation of Waste," Journal of Industrial Ecology, Yale University, vol. 7(2), pages 113-123, April.
    12. Bostian, Moriah & Färe, Rolf & Grosskopf, Shawna & Lundgren, Tommy, 2016. "Environmental investment and firm performance: A network approach," Energy Economics, Elsevier, vol. 57(C), pages 243-255.
    13. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249.
    14. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    15. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    16. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    17. Brannlund, Runar & Lundgren, Tommy, 2009. "Environmental Policy Without Costs? A Review of the Porter Hypothesis," International Review of Environmental and Resource Economics, now publishers, vol. 3(2), pages 75-117, September.
    18. Hanley, Nick & Shogren, Jason, 2007. "Introduction," Journal of Forest Economics, Elsevier, vol. 13(2-3), pages 73-74, August.
    19. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, December.
    20. Brännlund, Runar & Lundgren, Tommy, 2009. "Environmental policy without costs? A review of the Porter hypothesis," Umeå Economic Studies 766, Umeå University, Department of Economics.
    21. Jurate Jaraite & Andrius Kazukauskas & Tommy Lundgren, 2014. "The effects of climate policy on environmental expenditure and investment: evidence from Sweden," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 3(2), pages 148-166, July.
    22. Førsund, Finn, 1998. "Pollution Modelling and Multiple-Output Production," Memorandum 10/2016, Oslo University, Department of Economics.
    23. K Hervé Dakpo & Philippe Jeanneaux & Laure Latruffe, 2017. "Greenhouse gas emissions and efficiency in French sheep meat farming: A non-parametric framework of pollution-adjusted technologies," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(1), pages 33-65.
    24. Sushama Murty & R. Robert Russell, 2018. "Modeling emission-generating technologies: reconciliation of axiomatic and by-production approaches," Empirical Economics, Springer, vol. 54(1), pages 7-30, February.
    25. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    26. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    27. Sushama Murty & Resham Nagpal, 2019. "Measuring output-based technical efficiency of Indian coal-based thermal power plants," Indian Growth and Development Review, Emerald Group Publishing Limited, vol. 13(1), pages 175-206, June.
    28. Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), 2016. "Advances in Efficiency and Productivity," International Series in Operations Research and Management Science, Springer, number 978-3-319-48461-7, September.
    29. Brännlund, Runar & Lundgren, Tommy, 2009. "Environmental policy without costs? A review of the Porter hypothesis," Sustainable Investment and Corporate Governance Working Papers 2009/1, Sustainable Investment Research Platform.
    30. Subhash C. Ray & Subal C. Kumbhakar & Pami Dua (ed.), 2015. "Benchmarking for Performance Evaluation," Springer Books, Springer, edition 127, number 978-81-322-2253-8, December.
    31. Bostian, Moriah & Färe, Rolf & Grosskopf, Shawna & Lundgren, Tommy, 2018. "Network Representations of Pollution-Generating Technologies," International Review of Environmental and Resource Economics, now publishers, vol. 11(3), pages 193-231, August.
    32. Ayres, Robert U & Kneese, Allen V, 1969. "Production , Consumption, and Externalities," American Economic Review, American Economic Association, vol. 59(3), pages 282-297, June.
    33. Fare, R. & Grosskopf, S. & Pasurka, C., 1986. "Effects on relative efficiency in electric power generation due to environmental controls," Resources and Energy, Elsevier, vol. 8(2), pages 167-184, June.
    34. K Hervé Dakpo & Frederic Ang, 2019. "Modelling Environmental Adjustments of Production Technologies: A Literature Review [Modélisation de technologies génératrices de pollution : revue de la littérature]," Post-Print hal-02789879, HAL.
    35. Udo Ebert & Heinz Welsch, 2007. "Environmental Emissions and Production Economics: Implications of the Materials Balance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 287-293.
    36. Fare, Rolf & Grosskopf, Shawna, 1983. "Measuring output efficiency," European Journal of Operational Research, Elsevier, vol. 13(2), pages 173-179, June.
    37. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, December.
    38. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finn R. Førsund, 2018. "Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance," Empirical Economics, Springer, vol. 54(1), pages 67-99, February.
    2. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    3. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    4. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    5. repec:zbw:inwedp:752021 is not listed on IDEAS
    6. Dakpo, K Hervé, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers 245191, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    7. Sushama Murty & R. Robert Russell, 2021. "A commentary on “Performance measurement and joint production of intended and unintended outputs” by Finn Førsund," Journal of Productivity Analysis, Springer, vol. 55(3), pages 177-184, June.
    8. Sushama Murty & R. Robert Russell, "undated". "Bad Outputs," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 17-06, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    9. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.
    10. Moriah Bostian & Rolf Färe & Shawna Grosskopf & Tommy Lundgren, 2022. "Prevention or cure? Optimal abatement mix," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(4), pages 503-531, October.
    11. Lauwers, Ludwig, 2009. "Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models," Ecological Economics, Elsevier, vol. 68(6), pages 1605-1614, April.
    12. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    13. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    14. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    15. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    16. Kenneth Rødseth, 2014. "Efficiency measurement when producers control pollutants: a non-parametric approach," Journal of Productivity Analysis, Springer, vol. 42(2), pages 211-223, October.
    17. Forsund, Finn R., 2009. "Good Modelling of Bad Outputs: Pollution and Multiple-Output Production," International Review of Environmental and Resource Economics, now publishers, vol. 3(1), pages 1-38, August.
    18. F. Ang & K. H. Dakpo, 2021. "Comment: Performance measurement and joint production of intended and unintended outputs," Journal of Productivity Analysis, Springer, vol. 55(3), pages 185-188, June.
    19. Liu, Haiying & Owens, Katharine A. & Yang, Ke & Zhang, Chunhong, 2020. "Pollution abatement costs and technical changes under different environmental regulations," China Economic Review, Elsevier, vol. 62(C).
    20. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    21. Roshdi, Israfil & Hasannasab, Maryam & Margaritis, Dimitris & Rouse, Paul, 2018. "Generalised weak disposability and efficiency measurement in environmental technologies," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1000-1012.

    More about this item

    Keywords

    Intended and unintended outputs; Joint production; Materials balance; Technical jointness; Pollution; Weak disposability;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:55:y:2021:i:3:d:10.1007_s11123-021-00599-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.