IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v49y2018i2d10.1007_s11123-018-0525-y.html
   My bibliography  Save this article

Application of a bias-corrected meta-frontier approach and an endogenous switching regression to analyze the technical efficiency of conservation tillage for wheat in South Asia

Author

Listed:
  • Sreejith Aravindakshan

    (Wageningen University
    International Maize and Wheat Improvement Center (CIMMYT))

  • Frederick Rossi

    (International Maize and Wheat Improvement Center (CIMMYT)
    University of Florida)

  • T. S. Amjath-Babu

    (Leibniz Centre for Agricultural Landscape Research (ZALF))

  • Prakashan Chellattan Veettil

    (International Rice Research Institute (IRRI))

  • Timothy J. Krupnik

    (International Maize and Wheat Improvement Center (CIMMYT))

Abstract

Conservation tillage (CT) options are among the most rapidly spreading land preparation and crop establishment techniques globally. In South Asia, CT has spread dramatically over the last decade, a result of strong policy support and increasing availability of appropriate machinery. Although many studies have analyzed the yield and profitability of CT systems, the technical efficiency impacts accrued by farmers utilizing CT have received considerably less attention. Employing a DEA framework, we isolated bias-corrected meta-frontier technical efficiencies and meta-technology ratios of three CT options adopted by wheat farmers in Bangladesh, including bed planting (BP), power tiller operated seeding (PTOS), and strip tillage (ST), compared to a control group of farmers practicing traditional tillage (TT). Endogenous switching regression was subsequently employed to overcome potential self-selection bias in the choice of CT, in order to robustly estimate efficiency factors. Among the tillage options studied, PTOS was the most technically efficient, with an average meta-technology ratio of 0.90, followed by BP (0.88), ST (0.83), and TT (0.67). The average predicted meta-frontier technical efficiency for the CT non-adopters under a counterfactual scenario (0.80) was significantly greater (P = 0.00) than current TE scores (0.65), indicating the potential for sizeable profitability increases with CT adoption. Conversely, the counterfactual TE of non-adopters was 23% greater than their DEA efficiency, also indicating efficiency gains from CT adoption. Our results provide backing for agricultural development programs in South Asia that aim to increase smallholder farmers’ income through the application of CT as a pathway towards poverty reduction.

Suggested Citation

  • Sreejith Aravindakshan & Frederick Rossi & T. S. Amjath-Babu & Prakashan Chellattan Veettil & Timothy J. Krupnik, 2018. "Application of a bias-corrected meta-frontier approach and an endogenous switching regression to analyze the technical efficiency of conservation tillage for wheat in South Asia," Journal of Productivity Analysis, Springer, vol. 49(2), pages 153-171, June.
  • Handle: RePEc:kap:jproda:v:49:y:2018:i:2:d:10.1007_s11123-018-0525-y
    DOI: 10.1007/s11123-018-0525-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-018-0525-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-018-0525-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    2. Areti Gkypali & Kostas Tsekouras, 2015. "Productive performance based on R&D activities of low-tech firms: an antecedent of the decision to export?," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 24(8), pages 801-828, November.
    3. González-Flores, Mario & Bravo-Ureta, Boris E. & Solís, Daniel & Winters, Paul, 2014. "The impact of high value markets on smallholder productivity in the Ecuadorean Sierra: A Stochastic Production Frontier approach correcting for selectivity bias," Food Policy, Elsevier, vol. 44(C), pages 237-247.
    4. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    5. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 1993. "The Measurement of Productive Efficiency: Techniques and Applications," OUP Catalogue, Oxford University Press, number 9780195072181.
    6. Esmeralda Ramalho & Joaquim Ramalho & Pedro Henriques, 2010. "Fractional regression models for second stage DEA efficiency analyses," Journal of Productivity Analysis, Springer, vol. 34(3), pages 239-255, December.
    7. Simar, L., 1991. "Estimating efficiencies from frontier models with panel data: a comparison of parametric, non-parametric and semi-parametric methods with boot strapping," LIDAM Discussion Papers CORE 1991026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Solis, Daniel & Bravo-Ureta, Boris E. & Quiroga, Ricardo E., 2007. "Soil conservation and technical efficiency among hillside farmers in Central America: a switching regression model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(4), pages 1-20.
    9. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    10. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    11. Arega Alene & V. Manyong, 2007. "The effects of education on agricultural productivity under traditional and improved technology in northern Nigeria: an endogenous switching regression analysis," Empirical Economics, Springer, vol. 32(1), pages 141-159, April.
    12. Wollni, Meike & Brümmer, Bernhard, 2012. "Productive efficiency of specialty and conventional coffee farmers in Costa Rica: Accounting for technological heterogeneity and self-selection," Food Policy, Elsevier, vol. 37(1), pages 67-76.
    13. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    14. Krishna, Vijesh V. & Aravindakshan, Sreejith & Chowdhury, Apurba & Rudra, Bankim, 2012. "Farmer Access and Differential Impacts of Zero Tillage Technology in the Subsistence Wheat Farming Systems of West Bengal, India," Socioeconomics Program Working Papers 147204, CIMMYT: International Maize and Wheat Improvement Center.
    15. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    16. William Greene, 2010. "A stochastic frontier model with correction for sample selection," Journal of Productivity Analysis, Springer, vol. 34(1), pages 15-24, August.
    17. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    18. Léopold Simar & Paul Wilson, 2011. "Two-stage DEA: caveat emptor," Journal of Productivity Analysis, Springer, vol. 36(2), pages 205-218, October.
    19. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    20. Renato Villano & Boris Bravo-Ureta & Daniel Solís & Euan Fleming, 2015. "Modern Rice Technologies and Productivity in the Philippines: Disentangling Technology from Managerial Gaps," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(1), pages 129-154, February.
    21. Wadud, Md. Abdul., 2003. "Technical, Allocative, and economic efficiency of farms in Bangladesh: a stochastic frontier and DEA approach," Journal of Developing Areas, Tennessee State University, College of Business, vol. 37(1), pages 109-126, September.
    22. Ralph E. Heimlich, 1985. "Landownership and the Adoption of Minimum Tillage: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(3), pages 679-681.
    23. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    24. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    25. Boris Bravo-Ureta & William Greene & Daniel Solís, 2012. "Technical efficiency analysis correcting for biases from observed and unobserved variables: an application to a natural resource management project," Empirical Economics, Springer, vol. 43(1), pages 55-72, August.
    26. Cook, Wade D. & Tone, Kaoru & Zhu, Joe, 2014. "Data envelopment analysis: Prior to choosing a model," Omega, Elsevier, vol. 44(C), pages 1-4.
    27. Jeffrey M. Perloff & Lori Lynch & Susan M. Gabbard, 1998. "Migration of Seasonal Agricultural Workers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 154-164.
    28. Erenstein, Olaf & Thorpe, William, 2011. "Livelihoods and agro-ecological gradients: A meso-level analysis in the Indo-Gangetic Plains, India," Agricultural Systems, Elsevier, vol. 104(1), pages 42-53, January.
    29. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    30. Sunding, David & Zilberman, David, 2001. "The agricultural innovation process: Research and technology adoption in a changing agricultural sector," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 4, pages 207-261, Elsevier.
    31. Michael Lokshin & Zurab Sajaia, 2004. "Maximum likelihood estimation of endogenous switching regression models," Stata Journal, StataCorp LP, vol. 4(3), pages 282-289, September.
    32. Aravindakshan, Sreejith & Rossi, Frederick J. & Krupnik, Timothy J., 2015. "What does benchmarking of wheat farmers practicing conservation tillage in the eastern Indo-Gangetic Plains tell us about energy use efficiency? An application of slack-based data envelopment analysis," Energy, Elsevier, vol. 90(P1), pages 483-493.
    33. Sanzidur Rahman & Aree Wiboonpongse & Songsak Sriboonchitta & Yaovarate Chaovanapoonphol, 2009. "Production Efficiency of Jasmine Rice Producers in Northern and North‐eastern Thailand," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(2), pages 419-435, June.
    34. Li, Qi & Maasoumi, Esfandiar & Racine, Jeffrey S., 2009. "A nonparametric test for equality of distributions with mixed categorical and continuous data," Journal of Econometrics, Elsevier, vol. 148(2), pages 186-200, February.
    35. Asad Qureshi & Zia Ahmad & Timothy Krupnik, 2015. "Moving from Resource Development to Resource Management: Problems, Prospects and Policy Recommendations for Sustainable Groundwater Management in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4269-4283, September.
    36. repec:zwi:journl:v:43:y:2012:i:1:p:55-72 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walheer, Barnabé, 2023. "Meta-frontier and technology switchers: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 463-474.
    2. Ojo, Temitope O. & Baiyegunhi, Lloyd J.S & Adetoro, Adetoso A. & Ogundeji, Abiodun A., 2021. "Adoption of Soil and Water Conservation Technology and Its Impact on the Productivity of Smallholder Rice Farmers in Southwest, Nigeria," 2021 Conference, August 17-31, 2021, Virtual 314981, International Association of Agricultural Economists.
    3. Boris E. Bravo‐Ureta & Mario González‐Flores & William Greene & Daniel Solís, 2021. "Technology and Technical Efficiency Change: Evidence from a Difference in Differences Selectivity Corrected Stochastic Production Frontier Model," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 362-385, January.
    4. Silvia Saravia-Matus & T. S. Amjath-Babu & Sreejith Aravindakshan & Stefan Sieber & Jimmy A. Saravia & Sergio Gomez y Paloma, 2021. "Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    5. Jung Ho Park & Kwangsoo Shin, 2018. "Efficiency of Government-Sponsored R&D Projects: A Metafrontier DEA Approach," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    6. Tamer El-Shater & Amin Mugera & Yigezu A. Yigezu, 2020. "Implications of Adoption of Zero Tillage (ZT) on Productive Efficiency and Production Risk of Wheat Production," Sustainability, MDPI, vol. 12(9), pages 1-13, May.
    7. Yigezu A. Yigezu & Tamer El‐Shater, 2021. "Socio‐economic impacts of zero and reduced tillage in wheat fields of the Moroccan drylands," Agricultural Economics, International Association of Agricultural Economists, vol. 52(4), pages 645-663, July.
    8. Binlei Gong & Robin C. Sickles, 2021. "Resource allocation in multi-divisional multi-product firms," Journal of Productivity Analysis, Springer, vol. 55(2), pages 47-70, April.
    9. Kehinde, Ayodeji Damilola, 2021. "Impact of Credit Access and Cooperative Membership on Cocoa Productivity in Southwestern Nigeria," 2021 Conference, August 17-31, 2021, Virtual 315855, International Association of Agricultural Economists.
    10. Aravindakshan, Sreejith & Krupnik, Timothy J. & Amjath-Babu, T.S. & Speelman, Stijn & Tur-Cardona, Juan & Tittonell, Pablo & Groot, Jeroen C.J., 2021. "Quantifying farmers' preferences for cropping systems intensification: A choice experiment approach applied in coastal Bangladesh's risk prone farming systems," Agricultural Systems, Elsevier, vol. 189(C).
    11. Tamer Işgın & Remziye Özel & Abdulbaki Bilgiç & Wojciech J. Florkowski & Mehmet Reşit Sevinç, 2020. "DEA Performance Measurements in Cotton Production of Harran Plain, Turkey: A Single and Double Bootstrap Truncated Regression Approaches," Agriculture, MDPI, vol. 10(4), pages 1-17, April.
    12. Si, Ruishi & Lu, Qian & Aziz, Noshaba, 2021. "Does the stability of farmland rental contract & conservation tillage adoption improve family welfare? Empirical insights from Zhangye, China," Land Use Policy, Elsevier, vol. 107(C).
    13. Ojo, T.O. & Baiyegunhi, L.J.S., 2020. "Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria," Land Use Policy, Elsevier, vol. 95(C).
    14. Sreejith Aravindakshan & Timothy J. Krupnik & Sumona Shahrin & Pablo Tittonell & Kadambot H. M. Siddique & Lenora Ditzler & Jeroen C. J. Groot, 2021. "Socio-cognitive constraints and opportunities for sustainable intensification in South Asia: insights from fuzzy cognitive mapping in coastal Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16588-16616, November.
    15. T. O Ojo & L.J. S Baiyegunhi & A. O Salami, 2019. "Impact of Credit Demand on the Productivity of Rice Farmers in South West Nigeria," Journal of Economics and Behavioral Studies, AMH International, vol. 11(1), pages 166-180.
    16. Kenichi Kashiwagi & Hajime Kamiyama, 2023. "Effect of adoption of organic farming on technical efficiency of olive-growing farms: empirical evidence from West Bank of Palestine," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-28, December.
    17. Aravindakshan, Sreejith & Krupnik, Timothy J. & Groot, Jeroen C.J. & Speelman, Erika N. & Amjath- Babu, T.S. & Tittonell, Pablo, 2020. "Multi-level socioecological drivers of agrarian change: Longitudinal evidence from mixed rice-livestock-aquaculture farming systems of Bangladesh," Agricultural Systems, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    2. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    3. Silvia Saravia-Matus & T. S. Amjath-Babu & Sreejith Aravindakshan & Stefan Sieber & Jimmy A. Saravia & Sergio Gomez y Paloma, 2021. "Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    4. Luis A. De los Santos‐Montero & Boris E. Bravo‐Ureta, 2017. "Productivity effects and natural resource management: econometric evidence from POSAF‐II in Nicaragua," Natural Resources Forum, Blackwell Publishing, vol. 41(4), pages 220-233, November.
    5. Maria Vrachioli & Spiro E. Stefanou & Vangelis Tzouvelekas, 2021. "Impact Evaluation of Alternative Irrigation Technology in Crete: Correcting for Selectivity Bias," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 551-574, July.
    6. Gounopoulos, Dimitrios & Kallias, Konstantinos & Newton, David & Tzeremes, Nickolaos, 2016. "Political connections and IPO underpricing: An efficiency problem," MPRA Paper 69427, University Library of Munich, Germany.
    7. Boris E. Bravo‐Ureta & Mario González‐Flores & William Greene & Daniel Solís, 2021. "Technology and Technical Efficiency Change: Evidence from a Difference in Differences Selectivity Corrected Stochastic Production Frontier Model," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 362-385, January.
    8. Bravo-Ureta, Boris E. & Higgins, Daniel & Arslan, Aslihan, 2020. "Irrigation infrastructure and farm productivity in the Philippines: A stochastic Meta-Frontier analysis," World Development, Elsevier, vol. 135(C).
    9. Owusu, Eric S. & Bravo-Ureta, Boris E., 2022. "Reap when you sow? The productivity impacts of early sowing in Malawi," Agricultural Systems, Elsevier, vol. 199(C).
    10. Carrer, Marcelo José & Filho, Hildo Meirelles de Souza & Vinholis, Marcela de Mello Brandão & Mozambani, Carlos Ivan, 2022. "Precision agriculture adoption and technical efficiency: An analysis of sugarcane farms in Brazil," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    11. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    12. Abdul-Rahaman, Awal & Abdulai, Awudu, 2018. "Do farmer groups impact on farm yield and efficiency of smallholder farmers? Evidence from rice farmers in northern Ghana," Food Policy, Elsevier, vol. 81(C), pages 95-105.
    13. Lee, Boon L. & Wilson, Clevo & Simshauser, Paul & Majiwa, Eucabeth, 2021. "Deregulation, efficiency and policy determination: An analysis of Australia's electricity distribution sector," Energy Economics, Elsevier, vol. 98(C).
    14. Thibbotuwawa, Manoj & Mugera, Amin & White, Ben, 2013. "Production Efficiency and Technology Gap in Irrigated and Rain-fed Rice Farming Systems in Sri Lanka: Non Parametric Approach," 2013 Conference (57th), February 5-8, 2013, Sydney, Australia 152181, Australian Agricultural and Resource Economics Society.
    15. D'Inverno, Giovanna & Carosi, Laura & Ravagli, Letizia, 2018. "Global public spending efficiency in Tuscan municipalities," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 102-113.
    16. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2022. "Modeling heterogeneous technologies in the presence of sample selection: The case of dairy farms and the adoption of agri‐environmental schemes in France," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 422-438, May.
    17. González-Flores, Mario & Bravo-Ureta, Boris E. & Solís, Daniel & Winters, Paul, 2014. "The impact of high value markets on smallholder productivity in the Ecuadorean Sierra: A Stochastic Production Frontier approach correcting for selectivity bias," Food Policy, Elsevier, vol. 44(C), pages 237-247.
    18. Bravo-Ureta, Boris E. & Jara-Rojas, Roberto & Lachaud, Michee A. & Moreira L., Victor H. & Scheierling, Susanne M., 2015. "Water and Farm Efficiency: Insights from the Frontier Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 206076, Agricultural and Applied Economics Association.
    19. Juan Piedra-Peña & Diego Prior, 2023. "Analyzing the effect of health reforms on the efficiency of Ecuadorian public hospitals," International Journal of Health Economics and Management, Springer, vol. 23(3), pages 361-392, September.
    20. Abdul-Rahaman, Awal & Issahaku, Gazali & Zereyesus, Yacob A., 2021. "Improved rice variety adoption and farm production efficiency: Accounting for unobservable selection bias and technology gaps among smallholder farmers in Ghana," Technology in Society, Elsevier, vol. 64(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:49:y:2018:i:2:d:10.1007_s11123-018-0525-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.