Advanced Search
MyIDEAS: Login

A Bayesian threshold nonlinearity test for financial time series

Contents:

Author Info

  • Cathy W. S. Chen

    (Feng Chia University, Taiwan)

  • Mike K. P. So

    (Hong Kong University of Science and Technology, Hong Kong)

  • Ming-Tien Chen

    (Feng Chia University, Taiwan)

Abstract

We propose in this paper a threshold nonlinearity test for financial time series. Our approach adopts reversible-jump Markov chain Monte Carlo methods to calculate the posterior probabilities of two competitive models, namely GARCH and threshold GARCH models. Posterior evidence favouring the threshold GARCH model indicates threshold nonlinearity or volatility asymmetry. Simulation experiments demonstrate that our method works very well in distinguishing GARCH and threshold GARCH models. Sensitivity analysis shows that our method is robust to misspecification in error distribution. In the application to 10 market indexes, clear evidence of threshold nonlinearity is discovered and thus supporting volatility asymmetry. Copyright © 2005 John Wiley & Sons, Ltd.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1002/for.939
File Function: Link to full text; subscription required
Download Restriction: no

Bibliographic Info

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 24 (2005)
Issue (Month): 1 ()
Pages: 61-75

as in new window
Handle: RePEc:jof:jforec:v:24:y:2005:i:1:p:61-75

Contact details of provider:
Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Chen, Cathy W.S. & Chan, Jennifer S.K. & So, Mike K.P. & Lee, Kevin K.M., 2011. "Classification in segmented regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2276-2287, July.
  2. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Society for Computational Economics, vol. 40(1), pages 19-48, June.
  3. Massimiliano Caporin & Loriana Pelizzon & Francesco Ravazzolo & Roberto Rigobon, 2012. "Measuring sovereign contagion in Europe," Working Paper 2012/05, Norges Bank.
  4. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2011. "Bayesian Combinations of Stock Price Predictions with an Application to the Amsterdam Exchange Index," Tinbergen Institute Discussion Papers 11-082/4, Tinbergen Institute.
  5. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
  6. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
  7. Cathy Chen & Feng Liu & Richard Gerlach, 2011. "Bayesian subset selection for threshold autoregressive moving-average models," Computational Statistics, Springer, vol. 26(1), pages 1-30, March.
  8. Chen, Cathy W.S. & Gerlach, Richard & Wei, D.C.M., 2009. "Bayesian causal effects in quantiles: Accounting for heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1993-2007, April.
  9. Nonejad, Nima, 2014. "Particle Markov Chain Monte Carlo Techniques of Unobserved Component Time Series Models Using Ox," MPRA Paper 55662, University Library of Munich, Germany.
  10. Chen, Cathy W.S. & Gerlach, Richard & So, Mike K.P., 2006. "Comparison of nonnested asymmetric heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2164-2178, December.
  11. Lai, YiHao & Chen, Cathy W.S. & Gerlach, Richard, 2009. "Optimal dynamic hedging via copula-threshold-GARCH models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2609-2624.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:24:y:2005:i:1:p:61-75. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.