IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13854-d702934.html
   My bibliography  Save this article

Can China’s “Tax-for-Fee” Reform Improve Water Performance–Evidence from Hebei Province

Author

Listed:
  • Lingyun He

    (College of Economics, Jinan University, Guangzhou 510632, China
    These authors contributed equally to this work.)

  • Kunxian Chen

    (College of Economics, Jinan University, Guangzhou 510632, China
    These authors contributed equally to this work.)

Abstract

Resource tax has been widely adopted in many countries. This paper evaluates the causal effect of reform of water resources tax on water resources performance in Hebei Province, China. By using the provincial panel data, we first measure the water resources performance of 21 provinces from 2008 to 2018 by considering the NDDF-ML method of undesirable output. We found that each province in China has gradually improved its water resources performance in the past 10 years, but there are great differences between regions. Then, we employ the synthetic control method, which allows us to consider the influence of unobservable time-varying factors to evaluate the policy effect. The results show that water performance index has increased significantly by 18.0%. The effect is mainly due to technological progress (17.3%) rather than technological efficiency (0.7%), which means no significant improvement in the allocation of water, and after placebo tests, our results are still robust. The DID approach shows a similar conclusion, but unobservable time-variation caused by other policies may lead to an overestimation of DID. In order to make good use of water resources, China should accelerate the reform of water resource taxes and pay more attention to the allocation of water resources.

Suggested Citation

  • Lingyun He & Kunxian Chen, 2021. "Can China’s “Tax-for-Fee” Reform Improve Water Performance–Evidence from Hebei Province," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13854-:d:702934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junsong Wang & Yehua Dennis Wei, 2019. "Agglomeration, Environmental Policies and Surface Water Quality in China: A Study Based on a Quasi-Natural Experiment," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    2. Bueno, Matheus & Valente, Marica, 2019. "The effects of pricing waste generation: A synthetic control approach," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 96, pages 274-285.
    3. Luo, Renfu & Zhang, Linxiu & Huang, Jikun & Rozelle, Scott, 2007. "Elections, fiscal reform and public goods provision in rural China," Journal of Comparative Economics, Elsevier, vol. 35(3), pages 583-611, September.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Heerink, Nico & Qu, Futian & Kuiper, Marijke & Shi, Xiaoping & Tan, Shuhao, 2007. "Policy reforms, rice production and sustainable land use in China: A macro-micro analysis," Agricultural Systems, Elsevier, vol. 94(3), pages 784-800, June.
    6. Zhongfa Ma & Jianfu Zhao & Jiahui Ni, 2018. "Green Tax Legislation For Sustainable Development In China," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(04), pages 1059-1083, September.
    7. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    8. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    9. Mushtaq, Shahbaz & Khan, Shahbaz & Dawe, David & Hanjra, Munir A. & Hafeez, Mohsin & Asghar, Muhammad Nadeem, 2008. "Evaluating the impact of Tax-for-Fee reform (Fei Gai Shui) on water resources and agriculture production in the Zhanghe Irrigation System, China," Food Policy, Elsevier, vol. 33(6), pages 576-586, December.
    10. Chen, Zhao & Kahn, Matthew E. & Liu, Yu & Wang, Zhi, 2018. "The consequences of spatially differentiated water pollution regulation in China," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 468-485.
    11. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    12. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    13. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    14. Mushtaq, Shahbaz & Dawe, David & Lin, Hong & Moya, Piedad, 2006. "An assessment of the role of ponds in the adoption of water-saving irrigation practices in the Zhanghe Irrigation System, China," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 100-110, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    2. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    3. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    4. Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
    5. Ya Wu & Yin Liu & Minglong Zhang, 2023. "How Does Digital Finance Affect Energy Efficiency?—Characteristics, Mechanisms, and Spatial Effects," Sustainability, MDPI, vol. 15(9), pages 1-24, April.
    6. Zhu, Runqing & Lin, Boqiang, 2021. "Energy and carbon performance improvement in China's mining Industry:Evidence from the 11th and 12th five-year plan," Energy Policy, Elsevier, vol. 154(C).
    7. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    8. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    9. Yang, Hongliang & Pollitt, Michael, 2010. "The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coal-fired power plants," Energy Policy, Elsevier, vol. 38(8), pages 4440-4444, August.
    10. Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    11. Song, Malin & Zhang, Jie & Wang, Shuhong, 2015. "Review of the network environmental efficiencies of listed petroleum enterprises in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 65-71.
    12. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    13. Sebastian Cuadros & Yeny E. Rodríguez & Javier Contreras, 2020. "Dynamic Data Envelopment Analysis Model Involving Undesirable Outputs in the Electricity Power Generation Sector: The Case of Latin America and the Caribbean Countries," Energies, MDPI, vol. 13(24), pages 1-20, December.
    14. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    15. Hailu, Atakelty & Veeman, Terrence S., 1998. "Non-Parametric Approaches To Environmentally Sensitive Analysis Of Economic Performance: Technical Change And Productivity Growth In The Canadian Pulp And Paper Industry, 1959-1994," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20813, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Jie Wu & Qingyuan Zhu & Pengzhen Yin & Malin Song, 2017. "Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices," Operational Research, Springer, vol. 17(3), pages 715-735, October.
    17. Monastyrenko, Evgenii, 2017. "Eco-efficiency outcomes of mergers and acquisitions in the European electricity industry," Energy Policy, Elsevier, vol. 107(C), pages 258-277.
    18. Ning Zhang & Jong-Dae Kim, 2014. "Measuring sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure," Sustainability, MDPI, vol. 6(3), pages 1-13, March.
    19. Wang, H. & Ang, B.W. & Wang, Q.W. & Zhou, P., 2017. "Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach," Energy Economics, Elsevier, vol. 62(C), pages 70-78.
    20. Pei-Pei Jiang & Yuan Wang & Jin Luo & Lin Zhu & Rui Shi & Song Hu & Xiaodong Zhu, 2023. "Measuring static and dynamic industrial eco-efficiency in China based on the MinDS–Malmquist–Luenberger model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5241-5261, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13854-:d:702934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.