IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5545-d555584.html
   My bibliography  Save this article

Economic and Environmental Changes in Shenzhen—A Technology Hub in Southern China

Author

Listed:
  • Wai-Ming To

    (School of Business, Macao Polytechnic Institute, Macao, China)

  • Peter K. C. Lee

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hong Kong, China)

  • Antonio K. W. Lau

    (School of Management, Kyung Hee University, Seoul 02447, Korea)

Abstract

Shenzhen has been established as the technology and innovation center in China. The study reviews its economic development and environmental change over the past four decades. Specifically, it tests whether environmental Kuznets curve relationship between haze as a proxy indicator of environmental condition and gross domestic product (GDP) per capita holds in Shenzhen. The study also examines the contribution of Shenzhen’s secondary sector to its GDP and highlights some changes in the computer, communication and electronic product manufacturing industries over the years. We collected the official data from the Shenzhen Municipal Government. Economic, social and environmental changes in Shenzhen were identified using tables and stacked graphs. Environmental Kuznets curve revealed that the worst environmental condition appeared in Shenzhen during the period 2003–2004. Environmental analysis showed that Shenzhen’s computer, communication and electronic product manufacturing industries consumed 52,595 TJ of energy and produced 10.1 million tons CO 2 -eq in 2019. As gross output value of the industries was USD 336 billion in 2019, the industries had an energy efficiency of 156,716 MJ/million USD and an emission efficiency of 30.6 tons CO 2 -eq/million USD, improving by 74% and 65%, respectively, since 2008. Nevertheless, the industries should focus more on high value-added and low energy-intensive technologies and innovations. Additionally, the Shenzhen Government shall increase the use of clean energy sources such as nuclear, wind and solar power in order to sustain the continual improvement of energy and emission efficiencies for all industries.

Suggested Citation

  • Wai-Ming To & Peter K. C. Lee & Antonio K. W. Lau, 2021. "Economic and Environmental Changes in Shenzhen—A Technology Hub in Southern China," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5545-:d:555584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5545/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5545/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Jing Jing & Ye, Bin & Ma, Xiao Ming, 2014. "The construction of Shenzhen׳s carbon emission trading scheme," Energy Policy, Elsevier, vol. 75(C), pages 17-21.
    2. Wai-Ming To & Peter K. C. Lee, 2017. "Energy Consumption and Economic Development in Hong Kong, China," Energies, MDPI, vol. 10(11), pages 1-13, November.
    3. Munasinghe, Mohan, 1999. "Is environmental degradation an inevitable consequence of economic growth: tunneling through the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 29(1), pages 89-109, April.
    4. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    5. Asafu-Adjaye, John, 2000. "The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries," Energy Economics, Elsevier, vol. 22(6), pages 615-625, December.
    6. Yuriy Bilan & Dalia Streimikiene & Tetyana Vasylieva & Oleksii Lyulyov & Tetyana Pimonenko & Anatolii Pavlyk, 2019. "Linking between Renewable Energy, CO 2 Emissions, and Economic Growth: Challenges for Candidates and Potential Candidates for the EU Membership," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    7. Chia-Lin Chang & Te-Ke Mai & Michael Mcaleer, 2018. "Pricing Carbon Emissions In China," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 1-37, September.
    8. Yang, Xuechun & Lou, Feng & Sun, Mingxing & Wang, Renqing & Wang, Yutao, 2017. "Study of the relationship between greenhouse gas emissions and the economic growth of Russia based on the Environmental Kuznets Curve," Applied Energy, Elsevier, vol. 193(C), pages 162-173.
    9. Serhiy Lyeonov & Tetyana Pimonenko & Yuriy Bilan & Dalia Štreimikienė & Grzegorz Mentel, 2019. "Assessment of Green Investments’ Impact on Sustainable Development: Linking Gross Domestic Product Per Capita, Greenhouse Gas Emissions and Renewable Energy," Energies, MDPI, vol. 12(20), pages 1-12, October.
    10. Bao, Shuming & Chang, Gene Hsin & Sachs, Jeffrey D. & Woo, Wing Thye, 2002. "Geographic factors and China's regional development under market reforms, 1978-1998," China Economic Review, Elsevier, vol. 13(1), pages 89-111.
    11. Lei Yang & Yiji Cai & Xiaozhe Zhong & Yongqiang Shi & Zhiyong Zhang, 2017. "A Carbon Emission Evaluation for an Integrated Logistics System—A Case Study of the Port of Shenzhen," Sustainability, MDPI, vol. 9(3), pages 1-23, March.
    12. Mengnan Li & Haiyi Ye & Xiawei Liao & Junping Ji & Xiaoming Ma, 2020. "How Shenzhen, China pioneered the widespread adoption of electric vehicles in a major city: Implications for global implementation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(4), July.
    13. Hans R.A. Koster & Fang Fang Cheng & Michiel Gerritse & Frank G. van Oort, 2019. "Place‐based policies, firm productivity, and displacement effects: Evidence from Shenzhen, China," Journal of Regional Science, Wiley Blackwell, vol. 59(2), pages 187-213, March.
    14. Raźniak Piotr & Dorocki Sławomir & Winiarczyk-Raźniak Anna, 2020. "Spatial changes in the command and control function of cities based on the corporate centre of gravity model," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 24(1), pages 35-41, January.
    15. Yu, Eden S. H. & Hwang, Been-Kwei, 1984. "The relationship between energy and GNP : Further results," Energy Economics, Elsevier, vol. 6(3), pages 186-190, July.
    16. Wai-Ming To & Peter K. C. Lee, 2017. "A Triple Bottom Line Analysis of Hong Kong’s Logistics Sector," Sustainability, MDPI, vol. 9(3), pages 1-10, March.
    17. Jianhui Liu & Qiuxiong Chen & Xuemei Lang & Yanhong Wang & Shuanshi Fan, 2012. "Analysis on the development prospect of natural gas utilization in Shenzhen," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 7(4), pages 264-270, June.
    18. Wai-Ming To & Peter Ka Chun Lee & Tsz-Ming Lai, 2017. "Modeling of Monthly Residential and Commercial Electricity Consumption Using Nonlinear Seasonal Models—The Case of Hong Kong," Energies, MDPI, vol. 10(7), pages 1-16, June.
    19. To, W.M., 2014. "Association between energy use and poor visibility in Hong Kong SAR, China," Energy, Elsevier, vol. 68(C), pages 12-20.
    20. Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
    21. Zhanglan Wu & Jie Tang & Dong Wang, 2016. "Low Carbon Urban Transitioning in Shenzhen: A Multi-Level Environmental Governance Perspective," Sustainability, MDPI, vol. 8(8), pages 1-15, July.
    22. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    23. Kate Smith & Shuming Liu & Tian Chang, 2016. "Contribution of Urban Water Supply to Greenhouse Gas Emissions in China," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 792-802, August.
    24. Wai-Ming To & Peter K. C. Lee & Chi To Ng, 2017. "Factors Contributing to Haze Pollution: Evidence from Macao, China," Energies, MDPI, vol. 10(9), pages 1-12, September.
    25. Lai, T.M. & To, W.M. & Lo, W.C. & Choy, Y.S. & Lam, K.H., 2011. "The causal relationship between electricity consumption and economic growth in a Gaming and Tourism Center: The case of Macao SAR, the People’s Republic of China," Energy, Elsevier, vol. 36(2), pages 1134-1142.
    26. Mihaela Sterpu & Georgeta Soava & Anca Mehedintu, 2018. "Impact of Economic Growth and Energy Consumption on Greenhouse Gas Emissions: Testing Environmental Curves Hypotheses on EU Countries," Sustainability, MDPI, vol. 10(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaofan Xian & Shuo Yang & Yupeng Fan & Haotong Wu & Cheng Gong, 2022. "Coupling Efficiency Assessment of Food–Energy–Water (FEW) Nexus Based on Urban Resource Consumption towards Economic Development: The Case of Shenzhen Megacity, China," Land, MDPI, vol. 11(10), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wai-Ming To & Peter K. C. Lee, 2017. "Energy Consumption and Economic Development in Hong Kong, China," Energies, MDPI, vol. 10(11), pages 1-13, November.
    2. Tomasz Rokicki & Aleksandra Perkowska, 2020. "Changes in Energy Supplies in the Countries of the Visegrad Group," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    3. Chien, Fengsheng & Hsu, Ching-Chi & Ozturk, Ilhan & Sharif, Arshian & Sadiq, Muhammad, 2022. "The role of renewable energy and urbanization towards greenhouse gas emission in top Asian countries: Evidence from advance panel estimations," Renewable Energy, Elsevier, vol. 186(C), pages 207-216.
    4. Lin, Boqiang & Moubarak, Mohamed & Ouyang, Xiaoling, 2014. "Carbon dioxide emissions and growth of the manufacturing sector: Evidence for China," Energy, Elsevier, vol. 76(C), pages 830-837.
    5. Tamba, Jean Gaston & Njomo, Donatien & Limanond, Thirayoot & Ntsafack, Borel, 2012. "Causality analysis of diesel consumption and economic growth in Cameroon," Energy Policy, Elsevier, vol. 45(C), pages 567-575.
    6. Hussain Ali Bekhet & Nor Hamisham Harun, 2017. "Elasticity and Causality among Electricity Generation from Renewable Energy and Its Determinants in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 202-216.
    7. Ewing, Bradley T. & Sari, Ramazan & Soytas, Ugur, 2007. "Disaggregate energy consumption and industrial output in the United States," Energy Policy, Elsevier, vol. 35(2), pages 1274-1281, February.
    8. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    9. Radosław Miśkiewicz, 2020. "Efficiency of Electricity Production Technology from Post-Process Gas Heat: Ecological, Economic and Social Benefits," Energies, MDPI, vol. 13(22), pages 1-15, November.
    10. Sari, Ramazan & Ewing, Bradley T. & Soytas, Ugur, 2008. "The relationship between disaggregate energy consumption and industrial production in the United States: An ARDL approach," Energy Economics, Elsevier, vol. 30(5), pages 2302-2313, September.
    11. Jaruwan Chontanawat & Lester C Hunt & Richard Pierse, 2006. "Causality between Energy Consumption and GDP: Evidence from 30 OECD and 78 Non-OECD Countries," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 113, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
    12. Tetyana Vasylieva & Oleksii Lyulyov & Yuriy Bilan & Dalia Streimikiene, 2019. "Sustainable Economic Development and Greenhouse Gas Emissions: The Dynamic Impact of Renewable Energy Consumption, GDP, and Corruption," Energies, MDPI, vol. 12(17), pages 1-12, August.
    13. Lee, Chien-Chiang & Chien, Mei-Se, 2010. "Dynamic modelling of energy consumption, capital stock, and real income in G-7 countries," Energy Economics, Elsevier, vol. 32(3), pages 564-581, May.
    14. Md. Sharif Hossain & Chikayoshi Saeki, 2012. "A Dynamic Causality Study between Electricity Consumption and Economic Growth for Global Panel: Evidence from 76 Countries," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 2(1), pages 1-13, March.
    15. Hannah Goozee, 2017. "Energy, poverty and development: a primer for the Sustainable Development Goals," Working Papers 156, International Policy Centre for Inclusive Growth.
    16. Beaudreau, Bernard C., 2010. "On the methodology of energy-GDP Granger causality tests," Energy, Elsevier, vol. 35(9), pages 3535-3539.
    17. Iryna Sotnyk & Tetiana Kurbatova & Oleksandr Kubatko & Olha Prokopenko & Gunnar Prause & Yevhen Kovalenko & Galyna Trypolska & Uliana Pysmenna, 2021. "Energy Security Assessment of Emerging Economies under Global and Local Challenges," Energies, MDPI, vol. 14(18), pages 1-20, September.
    18. Zachariadis, Theodoros, 2007. "Exploring the relationship between energy use and economic growth with bivariate models: New evidence from G-7 countries," Energy Economics, Elsevier, vol. 29(6), pages 1233-1253, November.
    19. Odhiambo, Nicholas M., 2010. "Energy consumption, prices and economic growth in three SSA countries: A comparative study," Energy Policy, Elsevier, vol. 38(5), pages 2463-2469, May.
    20. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5545-:d:555584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.