IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp12-20.html
   My bibliography  Save this article

Association between energy use and poor visibility in Hong Kong SAR, China

Author

Listed:
  • To, W.M.

Abstract

A city's reliance on energy increases when it is developed. Moreover, the combustion of fossil fuels inevitably generates air pollutants including carbon dioxide, nitrogen oxides, sulfur dioxide, particulate matter, and others. Combining with other anthropogenic air pollutants, visibility in many Asian cities including Hong Kong have deteriorated rapidly in the past decades. This paper explores the relationships between energy use, meteorological factors, and change in visibility in Hong Kong using long-term time-series data. The total use of primary energy increased from 146,700 TJ in 1971 to 1,270,865 TJ in 2011 while the number of hours of reduced visibility increased from 184 h to 1398 h during the same period of time. Bivariate correlations show that poor visibility was significantly associated with energy use and annual mean air temperature. Multiple regression analysis indicates that the burning of aviation gasoline significantly, adversely affect visibility. Results illustrate that the number of clear days in Hong Kong will decrease, in particular due to the increase in air traffic.

Suggested Citation

  • To, W.M., 2014. "Association between energy use and poor visibility in Hong Kong SAR, China," Energy, Elsevier, vol. 68(C), pages 12-20.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:12-20
    DOI: 10.1016/j.energy.2014.02.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214001960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.02.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, K.H. & Lai, T.M. & Lo, W.C. & To, W.M., 2012. "The application of dynamic modelling techniques to the grid-connected PV (photovoltaic) systems," Energy, Elsevier, vol. 46(1), pages 264-274.
    2. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    3. Lam, Joseph C. & Tang, H.L. & Li, Danny H.W., 2008. "Seasonal variations in residential and commercial sector electricity consumption in Hong Kong," Energy, Elsevier, vol. 33(3), pages 513-523.
    4. Edwin J. Elton & Martin J. Gruber & Jonathan Spitzer, 2006. "Improved Estimates of Correlation Coefficients and their Impact on Optimum Portfolios," European Financial Management, European Financial Management Association, vol. 12(3), pages 303-318, June.
    5. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    6. Luzzati, T. & Orsini, M., 2009. "Investigating the energy-environmental Kuznets curve," Energy, Elsevier, vol. 34(3), pages 291-300.
    7. Kesgin, Ugur, 2006. "Aircraft emissions at Turkish airports," Energy, Elsevier, vol. 31(2), pages 372-384.
    8. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    9. Yee Yan, Yuk, 1998. "Climate and residential electricity consumption in Hong Kong," Energy, Elsevier, vol. 23(1), pages 17-20.
    10. Li, Danny H.W. & Chau, Natalie T.C. & Wan, Kevin K.W., 2013. "Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies," Energy, Elsevier, vol. 53(C), pages 252-258.
    11. To, W.M. & Lai, T.M. & Chung, W.L., 2011. "Fuel life cycle emissions for electricity consumption in the world’s gaming center–Macao SAR, China," Energy, Elsevier, vol. 36(8), pages 5162-5168.
    12. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wai-Ming To & Peter K. C. Lee, 2017. "Energy Consumption and Economic Development in Hong Kong, China," Energies, MDPI, vol. 10(11), pages 1-13, November.
    2. Wai-Ming To & Peter K. C. Lee, 2017. "A Triple Bottom Line Analysis of Hong Kong’s Logistics Sector," Sustainability, MDPI, vol. 9(3), pages 1-10, March.
    3. Siwei Lou & Wenqiang Chen & Danny H.W. Li & Mo Wang & Hainan Chen & Isaac Y.F. Lun & Dawei Xia, 2019. "Tilted Photovoltaic Energy Outputs in Outdoor Environments," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    4. Wai-Ming To & Peter K. C. Lee & Antonio K. W. Lau, 2021. "Economic and Environmental Changes in Shenzhen—A Technology Hub in Southern China," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    5. Wai-Ming To & Peter K. C. Lee & Chi To Ng, 2017. "Factors Contributing to Haze Pollution: Evidence from Macao, China," Energies, MDPI, vol. 10(9), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Long & Zhao, Jing & Liu, Xin & Wang, Zhaoxia, 2014. "Energy consumption comparison analysis of high energy efficiency office buildings in typical climate zones of China and U.S. based on correction model," Energy, Elsevier, vol. 65(C), pages 221-232.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Tommaso Luzzati & Angela Parenti & Tommaso Rughi, 2017. "Spatial error regressions for testing the Cancer-EKC," Discussion Papers 2017/218, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    4. Zaman, Khalid & Shahbaz, Muhammad & Loganathan, Nanthakumar & Raza, Syed Ali, 2016. "Tourism development, energy consumption and Environmental Kuznets Curve: Trivariate analysis in the panel of developed and developing countries," Tourism Management, Elsevier, vol. 54(C), pages 275-283.
    5. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    6. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    7. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    8. Manel Kamoun & Ines Abdelkafi & Abdelfetah Ghorbel, 2019. "The Impact of Renewable Energy on Sustainable Growth: Evidence from a Panel of OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(1), pages 221-237, March.
    9. Kentaka Aruga, 2019. "Investigating the Energy-Environmental Kuznets Curve Hypothesis for the Asia-Pacific Region," Sustainability, MDPI, vol. 11(8), pages 1-12, April.
    10. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    11. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    12. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    13. Barra, Cristian & Zotti, Roberto, 2016. "Investigating the impact of national income on environmental pollution. International evidence," MPRA Paper 74149, University Library of Munich, Germany.
    14. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    15. Tetsuya Tsurumi & Shunsuke Managi, 2010. "Decomposition of the environmental Kuznets curve: scale, technique, and composition effects," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 11(1), pages 19-36, February.
    16. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    17. Cristian Barra & Roberto Zotti, 2018. "Investigating the non-linearity between national income and environmental pollution: international evidence of Kuznets curve," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 179-210, January.
    18. Menegaki, Angeliki N. & Tsagarakis, Konstantinos P., 2015. "Rich enough to go renewable, but too early to leave fossil energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1465-1477.
    19. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    20. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:12-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.