IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2225-d331836.html
   My bibliography  Save this article

Analysis of Scale Factors on China’s Sustainable Development Efficiency Based on Three-Stage DEA and a Double Threshold Test

Author

Listed:
  • Jianqing Zhang

    (Institute for the Development of Central China, Wuhan University, Wuhan 430072, China
    School of economics and management, Wuhan University, Wuhan 430072, China)

  • Song Wang

    (Institute for the Development of Central China, Wuhan University, Wuhan 430072, China
    School of Earth and Environmental Sciences, University of Queensland, Brisbane 4072, Australia)

  • Peilei Yang

    (School of urban and Regional Sciences, Shanghai University of Finance and Economics, Shanghai 200083, China)

  • Fei Fan

    (Institute for the Development of Central China, Wuhan University, Wuhan 430072, China
    School of Earth and Environmental Sciences, University of Queensland, Brisbane 4072, Australia)

  • Xueli Wang

    (Institute for the Development of Central China, Wuhan University, Wuhan 430072, China)

Abstract

Based on the Driver-Pressure-State-Impact-Response (DPSIR) framework, this paper constructs the input, expected output, and unexpected output of China’s sustainable development. This paper calculates the sustainable development efficiency of 31 provinces and cities in China using a super-slack-based measure (SBM) model that eliminates the influence of scale factors through a three-stage data envelope analysis (DEA) approach. Taking the level of science and technology as the control variable, and the relative scale efficiency as the threshold variable, this paper calculates the effects of the absolute scale of labor force, education, economy, enterprise, and transportation on sustainable development efficiency. The results show that: (1) there is an upward trajectory for sustainable development efficiency of China’s provinces and municipalities overall from 0.65 in 2004 to 0.68 in 2017, with significant regional differences in which the ecological efficiency in the Eastern region is 0.26 higher than that of the Central region; (2) it enhances the absolute scale of the labor force, education, and transportation, in order to reduce the inhibition on sustainable development efficiency; and (3) shifts our attention to the promotion of absolute economic scale to the promotion of green economic development, and increases control of polluting enterprises.

Suggested Citation

  • Jianqing Zhang & Song Wang & Peilei Yang & Fei Fan & Xueli Wang, 2020. "Analysis of Scale Factors on China’s Sustainable Development Efficiency Based on Three-Stage DEA and a Double Threshold Test," Sustainability, MDPI, vol. 12(6), pages 1-26, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2225-:d:331836
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Fan & Huan Lian & Song Wang, 2020. "Can regional collaborative innovation improve innovation efficiency? An empirical study of Chinese cities," Growth and Change, Wiley Blackwell, vol. 51(1), pages 440-463, March.
    2. Vaninsky, Alexander, 2018. "Energy-environmental efficiency and optimal restructuring of the global economy," Energy, Elsevier, vol. 153(C), pages 338-348.
    3. Aparicio, Juan & Pastor, Jesus T. & Zofio, Jose L., 2015. "How to properly decompose economic efficiency using technical and allocative criteria with non-homothetic DEA technologies," European Journal of Operational Research, Elsevier, vol. 240(3), pages 882-891.
    4. Tzeremes, Nickolaos G., 2014. "The effect of human capital on countries’ economic efficiency," Economics Letters, Elsevier, vol. 124(1), pages 127-131.
    5. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Land use efficiency and influencing factors of urban agglomerations in China," Land Use Policy, Elsevier, vol. 88(C).
    6. Zameer, Hashim & Yasmeen, Humaira & Wang, Rong & Tao, Jing & Malik, Muhammad Nasir, 2020. "An empirical investigation of the coordinated development of natural resources, financial development and ecological efficiency in China," Resources Policy, Elsevier, vol. 65(C).
    7. Gong, Xiaoxing & Wu, Xiaofan & Luo, Meifeng, 2019. "Company performance and environmental efficiency: A case study for shipping enterprises," Transport Policy, Elsevier, vol. 82(C), pages 96-106.
    8. Carrillo, Marianela & Jorge, Jesús M., 2017. "Multidimensional Analysis of Regional Tourism Sustainability in Spain," Ecological Economics, Elsevier, vol. 140(C), pages 89-98.
    9. Zhu, Lin & Wang, Yong & Shang, Peipei & Qi, Lin & Yang, Guangchun & Wang, Ying, 2019. "Improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China: Based on an improved nonradial multidirectional efficiency analysis," Energy Policy, Elsevier, vol. 133(C).
    10. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
    11. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    12. Chiu, Yung-ho & Huang, Chin-wei & Ma, Chun-Mei, 2011. "Assessment of China transit and economic efficiencies in a modified value-chains DEA model," European Journal of Operational Research, Elsevier, vol. 209(2), pages 95-103, March.
    13. Song, Malin & Peng, Jun & Wang, Jianlin & Zhao, Jiajia, 2018. "Environmental efficiency and economic growth of China: A Ray slack-based model analysis," European Journal of Operational Research, Elsevier, vol. 269(1), pages 51-63.
    14. Wang, Zhaohua & Feng, Chao, 2015. "A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis," Applied Energy, Elsevier, vol. 147(C), pages 617-626.
    15. Orenstein, Daniel E. & Shach-Pinsley, Dalit, 2017. "A Comparative Framework for Assessing Sustainability Initiatives at the Regional Scale," World Development, Elsevier, vol. 98(C), pages 245-256.
    16. Kuang, Bing & Lu, Xinhai & Zhou, Min & Chen, Danling, 2020. "Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    17. Zhao, Haoran & Guo, Sen & Zhao, Huiru, 2019. "Provincial energy efficiency of China quantified by three-stage data envelopment analysis," Energy, Elsevier, vol. 166(C), pages 96-107.
    18. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    19. Sun, Jianjun & Harimaya, Kozo & Yamori, Nobuyoshi, 2013. "Regional economic development, strategic investors, and efficiency of Chinese city commercial banks," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1602-1611.
    20. Rajbhandari, Ashish & Zhang, Fan, 2018. "Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset," Energy Economics, Elsevier, vol. 69(C), pages 128-139.
    21. Tao, Xueping & Wang, Ping & Zhu, Bangzhu, 2016. "Provincial green economic efficiency of China: A non-separable input–output SBM approach," Applied Energy, Elsevier, vol. 171(C), pages 58-66.
    22. Suzuki, Soushi & Nijkamp, Peter, 2016. "An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis," Energy Policy, Elsevier, vol. 88(C), pages 100-112.
    23. Song Wang & Caizhi Sun & Xin Li & Wei Zou, 2016. "Sustainable Development in China’s Coastal Area: Based on the Driver-Pressure-State-Welfare-Response Framework and the Data Envelopment Analysis Model," Sustainability, MDPI, vol. 8(9), pages 1-19, September.
    24. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    25. Arbolino, Roberta & Boffardi, Raffaele & Lanuzza, Francesco & Ioppolo, Giuseppe, 2018. "Monitoring and evaluation of regional industrial sustainability: Evidence from Italian regions," Land Use Policy, Elsevier, vol. 75(C), pages 420-428.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lili Yang & Ning Ma, 2022. "Empirical Study on the Influence of Urban Environmental Industrial Structure Optimization on Ecological Landscape Greening Construction," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    2. Bresciani, Stefano & Puertas, Rosa & Ferraris, Alberto & Santoro, Gabriele, 2021. "Innovation, environmental sustainability and economic development: DEA-Bootstrap and multilevel analysis to compare two regions," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    3. Qu, Jingjing & Wang, Baohui & Liu, Xiaohong, 2022. "A modified super-efficiency network data envelopment analysis: Assessing regional sustainability performance in China," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    4. Radosław Łukasik & Tomasz Neumann, 2022. "Economic and Environmental Aspects of Engine Selection in Cargo Transportation," Energies, MDPI, vol. 15(7), pages 1-18, April.
    5. Haiqian Ke & Wenyi Yang & Xiaoyang Liu & Fei Fan, 2020. "Does Innovation Efficiency Suppress the Ecological Footprint? Empirical Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 17(18), pages 1-23, September.
    6. Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    7. Cui Wang & Yingyan Zhang & Conghu Liu & Fagang Hu & Shuling Zhou & Juan Zhu, 2021. "Emergy-Based Assessment and Suggestions for Sustainable Development of Regional Ecological Economy: A Case Study of Anhui Province, China," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    8. Min Qian & Zhenpeng Cheng & Zhengwen Wang & Dingyi Qi, 2022. "What Affects Rural Ecological Environment Governance Efficiency? Evidence from China," IJERPH, MDPI, vol. 19(10), pages 1-19, May.
    9. Wenyi Yang & Xueli Wang & Keke Zhang & Zikan Ke, 2020. "COVID-19, Urbanization Pattern and Economic Recovery: An Analysis of Hubei, China," IJERPH, MDPI, vol. 17(24), pages 1-21, December.
    10. Juan Hu & Chengjin Ma & Chen Li, 2022. "Can Green Innovation Improve Regional Environmental Carrying Capacity? An Empirical Analysis from China," IJERPH, MDPI, vol. 19(20), pages 1-15, October.
    11. Ján Dobrovič & Veronika Čabinová & Peter Gallo & Petra Partlová & Jan Váchal & Beáta Balogová & Jozef Orgonáš, 2021. "Application of the DEA Model in Tourism SMEs: An Empirical Study from Slovakia in the Context of Business Sustainability," Sustainability, MDPI, vol. 13(13), pages 1-19, July.
    12. Rui Wang & Bing Xia & Suocheng Dong & Yu Li & Zehong Li & Duoxun Ba & Wenbiao Zhang, 2020. "Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    13. Ning Ma & Puyu Liu & Yadong Xiao & Hengyun Tang & Jianqing Zhang, 2022. "Can Green Technological Innovation Reduce Hazardous Air Pollutants?—An Empirical Test Based on 283 Cities in China," IJERPH, MDPI, vol. 19(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhang & Yajing Wang & Jiangfeng Li, 2023. "Maximize Eco-Economic Benefits with Minimum Land Resources Input: Evaluation and Evolution of Land Use Eco-Efficiency of Agglomerations in Middle Reaches of Yangtze River, China," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    2. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    3. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    4. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    5. Mengchao Yao & Yihua Zhang, 2021. "Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    6. Yahong Liu & Hailian Sun & Lei Shi & Huimin Wang & Zhai Xiu & Xiao Qiu & Hong Chang & Yu Xie & Yang Wang & Chengjie Wang, 2021. "Spatial-Temporal Changes and Driving Factors of Land-Use Eco-Efficiency Incorporating Ecosystem Services in China," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    7. Yayuan Pang & Xinjun Wang, 2020. "Land-Use Efficiency in Shandong (China): Empirical Analysis Based on a Super-SBM Model," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    8. Qingxian An & Xiangyang Tao & Bo Dai & Jinlin Li, 2020. "Modified Distance Friction Minimization Model with Undesirable Output: An Application to the Environmental Efficiency of China’s Regional Industry," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1047-1071, April.
    9. Zhongxun Zhang & Kaifang Shi & Zhiyong Zhu & Lu Tang & Kangchuan Su & Qingyuan Yang, 2022. "Spatiotemporal Evolution and Influencing Factors of the Rural Natural Capital Utilization Efficiency: A Case Study of Chongqing, China," Land, MDPI, vol. 11(5), pages 1-29, May.
    10. Zhang, Caiqing & Chen, Panyu, 2022. "Applying the three-stage SBM-DEA model to evaluate energy efficiency and impact factors in RCEP countries," Energy, Elsevier, vol. 241(C).
    11. Guo, Qiu-tong & Dong, Yong & Feng, Biao & Zhang, Hao, 2023. "Can green finance development promote total-factor energy efficiency? Empirical evidence from China based on a spatial Durbin model," Energy Policy, Elsevier, vol. 177(C).
    12. Houtian Tang & Yuanlai Wu & Jinxiu Chen & Liuxin Deng & Minjie Zeng, 2022. "How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River," Land, MDPI, vol. 11(12), pages 1-20, December.
    13. Aiping Wang & Weifen Lin & Bei Liu & Hui Wang & Hong Xu, 2021. "Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land?," Land, MDPI, vol. 10(6), pages 1-18, June.
    14. Tan, Shukui & Hu, Bixia & Kuang, Bing & Zhou, Min, 2021. "Regional differences and dynamic evolution of urban land green use efficiency within the Yangtze River Delta, China," Land Use Policy, Elsevier, vol. 106(C).
    15. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    16. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    17. Liu, Haomin & Zhang, Zaixu & Zhang, Tao & Wang, Liyang, 2020. "Revisiting China’s provincial energy efficiency and its influencing factors," Energy, Elsevier, vol. 208(C).
    18. Di Zhu & Yinghong Wang & Shangui Peng & Fenglin Zhang, 2022. "Influence Mechanism of Polycentric Spatial Structure on Urban Land Use Efficiency: A Moderated Mediation Model," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    19. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    20. Hongwei Liu & Ronglu Yang & Zhixiang Zhou & Dacheng Huang, 2020. "Regional Green Eco-Efficiency in China: Considering Energy Saving, Pollution Treatment, and External Environmental Heterogeneity," Sustainability, MDPI, vol. 12(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2225-:d:331836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.