IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p803-d358412.html
   My bibliography  Save this article

A Revised Inverse Data Envelopment Analysis Model Based on Radial Models

Author

Listed:
  • Xiaoyin Hu

    (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
    School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Jianshu Li

    (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
    School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Xiaoya Li

    (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

  • Jinchuan Cui

    (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

In recent years, there has been an increasing interest in applying inverse data envelopment analysis (DEA) to a wide range of disciplines, and most applications have adopted radial-based inverse DEA models. However, results given by existing radial based inverse DEA models can be unreliable as they neglect slacks while evaluating decision-making units’ (DMUs) overall efficiency level, whereas classic radial DEA models measure the efficiency level through not only radial efficiency index but also slacks. This paper points out these disadvantages with a counterexample, where current inverse DEA models give results that outputs shall increase when inputs decrease. We show that these unreasonable results are the consequence of existing inverse DEA models’ failure in preserving DMU’s efficiency level. To rectify this problem, we propose a revised model for the situation where the investigated DMU has no slacks. Compared to existing radial inverse DEA models, our revised model can preserve radial efficiency index as well as eliminating all slacks, thus fulfilling the requirement of efficiency level invariant. Numerical examples are provided to illustrate the validity and limitations of the revised model.

Suggested Citation

  • Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:803-:d:358412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Hadi-Vencheh, Abdollah & Foroughi, Ali Asghar & Soleimani-damaneh, Majid, 2008. "A DEA model for resource allocation," Economic Modelling, Elsevier, vol. 25(5), pages 983-993, September.
    4. Meng Zhang & Jin-chuan Cui, 2016. "The extension and integration of the inverse DEA method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1212-1220, September.
    5. Wei, Quanling & Zhang, Jianzhong & Zhang, Xiangsun, 2000. "An inverse DEA model for inputs/outputs estimate," European Journal of Operational Research, Elsevier, vol. 121(1), pages 151-163, February.
    6. Robert G. Bland, 1977. "New Finite Pivoting Rules for the Simplex Method," Mathematics of Operations Research, INFORMS, vol. 2(2), pages 103-107, May.
    7. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    8. Lim, Dong-Joon, 2016. "Inverse DEA with frontier changes for new product target setting," European Journal of Operational Research, Elsevier, vol. 254(2), pages 510-516.
    9. Puig-Junoy, Jaume, 2000. "Partitioning input cost efficiency into its allocative and technical components: an empirical DEA application to hospitals," Socio-Economic Planning Sciences, Elsevier, vol. 34(3), pages 199-218, September.
    10. M. Eyni & G. Tohidi & S. Mehrabeian, 2017. "Applying inverse DEA and cone constraint to sensitivity analysis of DMUs with undesirable inputs and outputs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 34-40, January.
    11. Yan, Hong & Wei, Quanling & Hao, Gang, 2002. "DEA models for resource reallocation and production input/output estimation," European Journal of Operational Research, Elsevier, vol. 136(1), pages 19-31, January.
    12. Jianqing Zhang & Song Wang & Peilei Yang & Fei Fan & Xueli Wang, 2020. "Analysis of Scale Factors on China’s Sustainable Development Efficiency Based on Three-Stage DEA and a Double Threshold Test," Sustainability, MDPI, vol. 12(6), pages 1-26, March.
    13. Fakarudin Kamarudin & Fadzlan Sufian & Annuar Md. Nassir & Nazratul Aina Mohamad Anwar & Hafezali Iqbal Hussain, 2019. "Bank Efficiency in Malaysia a DEA Approach," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 8(1), pages 133-162.
    14. Ali Emrouznejad & Guo-liang Yang & Gholam R. Amin, 2019. "A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(7), pages 1079-1090, July.
    15. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, September.
    16. BLAND, Robert G., 1977. "New finite pivoting rules for the simplex method," LIDAM Reprints CORE 315, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moghaddas, Zohreh & Tosarkani, Babak Mohamadpour & Yousefi, Samuel, 2022. "Resource reallocation for improving sustainable supply chain performance: An inverse data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 252(C).
    2. Cui, Qiang & Jia, Zi-ke, 2023. "Measuring the dynamic airline energy efficiency with non-homogeneous structures," Energy, Elsevier, vol. 266(C).
    3. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    2. Farzaneh Asadi & Sohrab Kordrostami & Alireza Amirteimoori & Morteza Bazrafshan, 2023. "Inverse data envelopment analysis without convexity: double frontiers," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 335-354, June.
    3. Le, Minh Hanh & Afsharian, Mohsen & Ahn, Heinz, 2021. "Inverse Frontier-based Benchmarking for Investigating the Efficiency and Achieving the Targets in the Vietnamese Education System," Omega, Elsevier, vol. 103(C).
    4. Gholam R. Amin & Mustapha Ibn Boamah, 2020. "A new inverse DEA cost efficiency model for estimating potential merger gains: a case of Canadian banks," Annals of Operations Research, Springer, vol. 295(1), pages 21-36, December.
    5. Moghaddas, Zohreh & Tosarkani, Babak Mohamadpour & Yousefi, Samuel, 2022. "Resource reallocation for improving sustainable supply chain performance: An inverse data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 252(C).
    6. Ghiyasi, Mojtaba & Soltanifar, Mehdi & Sharafi, Hamid, 2022. "A novel inverse DEA-R model with application in hospital efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    7. Qingxian An & Xuyang Liu & Yongli Li & Beibei Xiong, 2019. "Resource planning of Chinese commercial banking systems using two-stage inverse data envelopment analysis with undesirable outputs," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-20, June.
    8. Mohammad Khoveyni & Robabeh Eslami, 2022. "Merging two-stage series network structures: A DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 273-302, March.
    9. Gholam R. Amin & Ali Emrouznejad & Said Gattoufi, 2017. "Modelling generalized firms’ restructuring using inverse DEA," Journal of Productivity Analysis, Springer, vol. 48(1), pages 51-61, August.
    10. Lim, Dong-Joon, 2016. "Inverse DEA with frontier changes for new product target setting," European Journal of Operational Research, Elsevier, vol. 254(2), pages 510-516.
    11. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    12. Yang Lin & Longzhong Yan & Ying-Ming Wang, 2019. "Performance Evaluation and Investment Analysis for Container Port Sustainable Development in China: An Inverse DEA Approach," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    13. Amin, Gholam R. & Ibn Boamah, Mustapha, 2023. "Modeling business partnerships: A data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 329-337.
    14. Toloo, Mehdi & Hančlová, Jana, 2020. "Multi-valued measures in DEA in the presence of undesirable outputs," Omega, Elsevier, vol. 94(C).
    15. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    16. Samira Foladi & Maghsud Solimanpur & Mustafa Jahangoshai Rezaee, 2020. "Inverse Dynamic Data Envelopment Analysis for Evaluating Faculties of University with Quasi-Fixed Inputs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 148(1), pages 323-347, February.
    17. Tüselmann, Heinz & Sinkovics, Rudolf R. & Pishchulov, Grigory, 2016. "Revisiting the standing of international business journals in the competitive landscape," Journal of World Business, Elsevier, vol. 51(4), pages 487-498.
    18. Henriques, C.O. & Chavez, J.M. & Gouveia, M.C. & Marcenaro-Gutierrez, O.D., 2022. "Efficiency of secondary schools in Ecuador: A value based DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    19. Chris van Heerden & Melville Saayman, 2018. "Sustainability of a national arts festival," Tourism Economics, , vol. 24(5), pages 576-592, August.
    20. Zhaohua, Wang & Jingyun, Li & Bin, Lu & Bo, Wang & Bin, Zhang & Kaining, Sun & Mao, Fan, 2023. "Effectiveness and risk of initial carbon quota allocation principle under the uncertainty of the Chinese electricity market," China Economic Review, Elsevier, vol. 77(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:803-:d:358412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.