IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7241-d298827.html
   My bibliography  Save this article

Identifying Urban Structure Based on Transit-Oriented Development

Author

Listed:
  • Yingqun Zhang

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Rui Song

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Rob van Nes

    (Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft, The Netherlands)

  • Shiwei He

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China)

  • Weichuan Yin

    (One Belt-One Road Strategy Institute, Tsinghua University, Beijing 100084, China)

Abstract

The fast development of urbanization has led to imbalances in cities, causing congestion, pollution, and urban sprawl. In response to the growing concern over the distribution of demand and supply, a more coordinated urban structure is addressed in comprehensive planning processes. In this study, we attempt to identify urban structure using a Network–Activity–Human model under the Transit-Oriented Development (TOD) concept, since TOD is usually regarded as an urban spatial planning tool. In order to explore the strengths and weaknesses of the urban structure, we define the TOD index and unbalance degree and then classify the urban areas accordingly. We take the city of Beijing as a case study and identify nine urban types. The results show a hierarchical urban structure: the city center covers most of the hotspots which display higher imbalances, the surroundings of the city center are less developed, and the city edges show higher potentials in both exploitation and transportation development. Moreover, we discuss the extent to which the spatial scale influences the unbalance degree and apply a sensitivity analysis based on the goals of different stakeholders. This methodology could be utilized at any study scale and in any situation, and the results could offer suggestions for more accurate urban planning, strengthening the relationship between TOD and spatial organization.

Suggested Citation

  • Yingqun Zhang & Rui Song & Rob van Nes & Shiwei He & Weichuan Yin, 2019. "Identifying Urban Structure Based on Transit-Oriented Development," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7241-:d:298827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Cervero, Robert & Day, Jennifer, 2008. "Suburbanization and transit-oriented development in China," Transport Policy, Elsevier, vol. 15(5), pages 315-323, September.
    3. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    4. Singh, Yamini Jain & Fard, Pedram & Zuidgeest, Mark & Brussel, Mark & Maarseveen, Martin van, 2014. "Measuring transit oriented development: a spatial multi criteria assessment approach for the City Region Arnhem and Nijmegen," Journal of Transport Geography, Elsevier, vol. 35(C), pages 130-143.
    5. Chorus, Paul & Bertolini, Luca, 2011. "An application of the node-place model to explore the spatial development dynamics of station areas in Tokyo," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 4(1), pages 45-58.
    6. Suzuki, Tsutomu & Lee, Sohee, 2012. "Jobs–housing imbalance, spatial correlation, and excess commuting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 322-336.
    7. Higgins, Christopher D. & Kanaroglou, Pavlos S., 2016. "A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region," Journal of Transport Geography, Elsevier, vol. 52(C), pages 61-72.
    8. Zemp, Stefan & Stauffacher, Michael & Lang, Daniel J. & Scholz, Roland W., 2011. "Classifying railway stations for strategic transport and land use planning: Context matters!," Journal of Transport Geography, Elsevier, vol. 19(4), pages 670-679.
    9. Sasaki, Komei, 1989. "Transportation system change and urban structure in two-transport mode setting," Journal of Urban Economics, Elsevier, vol. 25(3), pages 346-367, May.
    10. Mitra, Raktim & Buliung, Ron N., 2014. "The influence of neighborhood environment and household travel interactions on school travel behavior: an exploration using geographically-weighted models," Journal of Transport Geography, Elsevier, vol. 36(C), pages 69-78.
    11. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2014. "Advance transit oriented development typology: case study in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 34(C), pages 54-70.
    12. Hiroaki Suzuki & Robert Cervero & Kanako Iuchi, 2013. "Transforming Cities with Transit : Transit and Land-Use Integration for Sustainable Urban Development [Transformando las ciudades con el transporte público : integración del transporte público y el," World Bank Publications - Books, The World Bank Group, number 12233, December.
    13. Vale, David S., 2015. "Transit-oriented development, integration of land use and transport, and pedestrian accessibility: Combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbo," Journal of Transport Geography, Elsevier, vol. 45(C), pages 70-80.
    14. Sangeetha Ann & Meilan Jiang & Toshiyuki Yamamoto, 2019. "Influence Area of Transit-Oriented Development for Individual Delhi Metro Stations Considering Multimodal Accessibility," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    15. Reusser, Dominik E. & Loukopoulos, Peter & Stauffacher, Michael & Scholz, Roland W., 2008. "Classifying railway stations for sustainable transitions – balancing node and place functions," Journal of Transport Geography, Elsevier, vol. 16(3), pages 191-202.
    16. Staricco, Luca & Vitale Brovarone, Elisabetta, 2018. "Promoting TOD through regional planning. A comparative analysis of two European approaches," Journal of Transport Geography, Elsevier, vol. 66(C), pages 45-52.
    17. Wei Huang & Wann-Ming Wey, 2019. "Green Urbanism Embedded in TOD for Urban Built Environment Planning and Design," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    18. Josep Roca Cladera & Carlos R. Marmolejo Duarte & Montserrat Moix, 2009. "Urban Structure and Polycentrism: Towards a Redefinition of the Sub-centre Concept," Urban Studies, Urban Studies Journal Limited, vol. 46(13), pages 2841-2868, December.
    19. Sadayuki, Taisuke, 2018. "Measuring the spatial effect of multiple sites: An application to housing rent and public transportation in Tokyo, Japan," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 155-173.
    20. Song, Yan & Knaap, Gerrit-Jan, 2004. "Measuring the effects of mixed land uses on housing values," Regional Science and Urban Economics, Elsevier, vol. 34(6), pages 663-680, November.
    21. Freke Caset & David S. Vale & Cláudia M. Viana, 2018. "Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: a Node-Place Modeling Approach," Networks and Spatial Economics, Springer, vol. 18(3), pages 495-530, September.
    22. Se Na Sun & Jaeseok Her & Sae-Young Lee & Jae Seung Lee, 2017. "Meso-Scale Urban Form Elements for Bus Transit-Oriented Development: Evidence from Seoul, Republic of Korea," Sustainability, MDPI, vol. 9(9), pages 1-13, August.
    23. Guthrie, Andrew & Fan, Yingling, 2016. "Developers' perspectives on transit-oriented development," Transport Policy, Elsevier, vol. 51(C), pages 103-114.
    24. Freke Caset & David S. Vale & Cláudia M. Viana, 2018. "Correction to: Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: a Node-Place Modeling Approach," Networks and Spatial Economics, Springer, vol. 18(3), pages 531-531, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvin Christopher G. Varquez & Sifan Dong & Shinya Hanaoka & Manabu Kanda, 2020. "Improvement of an Urban Growth Model for Railway-Induced Urban Expansion," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    2. Jiwu Wang & Xuewei Hu & Chengyu Tong, 2021. "Urban Community Sustainable Development Patterns under the Influence of COVID-19: A Case Study Based on the Non-Contact Interaction Perspective of Hangzhou City," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    3. Andreas Braun & Gebhard Warth & Felix Bachofer & Michael Schultz & Volker Hochschild, 2023. "Mapping Urban Structure Types Based on Remote Sensing Data—A Universal and Adaptable Framework for Spatial Analyses of Cities," Land, MDPI, vol. 12(10), pages 1-41, October.
    4. Weichuan Yin & Yingqun Zhang, 2020. "Identification Method for Optimal Urban Bus Corridor Location," Sustainability, MDPI, vol. 12(17), pages 1-22, September.
    5. Tomasz Bajwoluk & Piotr Langer, 2022. "Impact of the “Krakow East–Bochnia” Road Transport Corridor on the Form of the Functio-Spatial Structure and Its Economic Activity," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    6. Oleksandra Osypchuk & Katarzyna Sosik, 2021. "Impact of the Construction Supplies Implementation on Road Safety in the City Center: A Case Study of the City of Szczecin," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    7. Batara Surya & Agus Salim & Hernita Hernita & Seri Suriani & Firman Menne & Emil Salim Rasyidi, 2021. "Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia," Land, MDPI, vol. 10(6), pages 1-31, May.
    8. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    9. Lee, Hye Kyung & Jiao, Junfeng & Choi, Seung Jun, 2021. "Identifying spatiotemporal transit deserts in Seoul, South Korea," Journal of Transport Geography, Elsevier, vol. 95(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    2. Nigro, Antonio & Bertolini, Luca & Moccia, Francesco Domenico, 2019. "Land use and public transport integration in small cities and towns: Assessment methodology and application," Journal of Transport Geography, Elsevier, vol. 74(C), pages 110-124.
    3. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    4. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    5. Lyu, Guowei & Bertolini, Luca & Pfeffer, Karin, 2016. "Developing a TOD typology for Beijing metro station areas," Journal of Transport Geography, Elsevier, vol. 55(C), pages 40-50.
    6. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    7. Jeffrey, Dana & Boulangé, Claire & Giles-Corti, Billie & Washington, Simon & Gunn, Lucy, 2019. "Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods," Journal of Transport Geography, Elsevier, vol. 76(C), pages 221-231.
    8. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    9. Qiaoling Fang & Tomo Inoue & Dongqi Li & Qiang Liu & Jian Ma, 2023. "Transit-Oriented Development and Sustainable Cities: A Visual Analysis of the Literature Based on CiteSpace and VOSviewer," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    10. Freke Caset & David S. Vale & Cláudia M. Viana, 2018. "Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: a Node-Place Modeling Approach," Networks and Spatial Economics, Springer, vol. 18(3), pages 495-530, September.
    11. Wei Wu & Prasanna Divigalpitiya, 2022. "Assessment of Accessibility and Activity Intensity to Identify Future Development Priority TODs in Hefei City," Land, MDPI, vol. 11(9), pages 1-17, September.
    12. Liu, Yunzhe & Singleton, Alex & Arribas-Bel, Daniel, 2020. "Considering context and dynamics: A classification of transit-orientated development for New York City," Journal of Transport Geography, Elsevier, vol. 85(C).
    13. Li, Zekun & Han, Zixuan & Xin, Jing & Luo, Xin & Su, Shiliang & Weng, Min, 2019. "Transit oriented development among metro station areas in Shanghai, China: Variations, typology, optimization and implications for land use planning," Land Use Policy, Elsevier, vol. 82(C), pages 269-282.
    14. Pezeshknejad, Parsa & Monajem, Saeed & Mozafari, Hamid, 2020. "Evaluating sustainability and land use integration of BRT stations via extended node place model, an application on BRT stations of Tehran," Journal of Transport Geography, Elsevier, vol. 82(C).
    15. Singh, Yamini Jain & Lukman, Azhari & Flacke, Johannes & Zuidgeest, Mark & Van Maarseveen, M.F.A.M., 2017. "Measuring TOD around transit nodes - Towards TOD policy," Transport Policy, Elsevier, vol. 56(C), pages 96-111.
    16. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    17. Ying Liang & Wei Song & Xiaofeng Dong, 2021. "Evaluating the Space Use of Large Railway Hub Station Areas in Beijing toward Integrated Station-City Development," Land, MDPI, vol. 10(11), pages 1-22, November.
    18. Vale, David S., 2015. "Transit-oriented development, integration of land use and transport, and pedestrian accessibility: Combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbo," Journal of Transport Geography, Elsevier, vol. 45(C), pages 70-80.
    19. Chen, Zhiheng & Li, Peiran & Jin, YanXiu & Bharule, Shreyas & Jia, Ning & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke & Zhang, Haoran, 2023. "Using mobile phone big data to identify inequity of aging groups in transit-oriented development station usage: A case of Tokyo," Transport Policy, Elsevier, vol. 132(C), pages 65-75.
    20. Higgins, Christopher D. & Kanaroglou, Pavlos S., 2016. "A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region," Journal of Transport Geography, Elsevier, vol. 52(C), pages 61-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7241-:d:298827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.