IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v79y2019ic9.html
   My bibliography  Save this article

Network criticality and the node-place-design model: Classifying metro station areas in Greater London

Author

Listed:
  • Zhang, Yuerong
  • Marshall, Stephen
  • Manley, Ed

Abstract

Centralisation of activities and developments around metro station areas is a key transit-oriented development (TOD) policy to encourage more public transport travel through providing maximum access to passengers, thereby enhancing economic efficiency, health, well-being and social inclusion. The node-place-design model is an analytical approach, which investigates the interaction between land use, transportation and the walking friendliness around station areas. Nevertheless, current research focuses on the role station areas plays at the local scale, and little consideration is given to the strategic network (system) level. In this research, we combine a strategic network indicator (criticality) with the node-place-design model to gain deeper insights into London metro station areas in terms of their transit-oriented-development at both local and system levels. Our research has three principal findings: first, most of station areas in Greater London show balanced situations between transport and land use development, except for some stations with a non-walking friendly environment such as Victoria station. Second, the two-tier approach finds that the system criticality of each station area can vary substantially even within the same cluster grouped by the original node-place-design model. Therefore, identifying station groups with relatively high network criticality and relatively low node-place-design score is of potential value. The promising transport connection and less-developed conditions of those station areas could help policymakers locate an intensification-diversification TOD group. Conversely, locations with high node-place-design values but low criticality could point to stations suitable for network expansion (new lines or interchanges). Third, the result reconfirms the value of introducing the third dimension – design – into the TOD evaluation of stations at the local scale. The relatively low correlation between node and design value is consistent with previous findings that a transport service-intensive and functionally diverse metro station area does not necessarily produce an accessible friendly walking environment. Overall, the paper provides a platform for further studies integrating strategic network and node-place-design attributes.

Suggested Citation

  • Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2019. "Network criticality and the node-place-design model: Classifying metro station areas in Greater London," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
  • Handle: RePEc:eee:jotrge:v:79:y:2019:i:c:9
    DOI: 10.1016/j.jtrangeo.2019.102485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319300377
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.102485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Reusser, Dominik E. & Loukopoulos, Peter & Stauffacher, Michael & Scholz, Roland W., 2008. "Classifying railway stations for sustainable transitions – balancing node and place functions," Journal of Transport Geography, Elsevier, vol. 16(3), pages 191-202.
    2. Cervero, Robert & Dai, Danielle, 2014. "BRT TOD: Leveraging transit oriented development with bus rapid transit investments," Transport Policy, Elsevier, vol. 36(C), pages 127-138.
    3. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    4. Camille Roth & Soong Moon Kang & Michael Batty & Marc Barthélemy, 2011. "Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-8, January.
    5. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    6. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    7. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    8. Lyu, Guowei & Bertolini, Luca & Pfeffer, Karin, 2016. "Developing a TOD typology for Beijing metro station areas," Journal of Transport Geography, Elsevier, vol. 55(C), pages 40-50.
    9. Chorus, Paul & Bertolini, Luca, 2011. "An application of the node-place model to explore the spatial development dynamics of station areas in Tokyo," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 4(1), pages 45-58.
    10. Higgins, Christopher D. & Kanaroglou, Pavlos S., 2016. "A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region," Journal of Transport Geography, Elsevier, vol. 52(C), pages 61-72.
    11. Zemp, Stefan & Stauffacher, Michael & Lang, Daniel J. & Scholz, Roland W., 2011. "Classifying railway stations for strategic transport and land use planning: Context matters!," Journal of Transport Geography, Elsevier, vol. 19(4), pages 670-679.
    12. Ahmed El-Geneidy & Michael Grimsrud & Rania Wasfi & Paul Tétreault & Julien Surprenant-Legault, 2014. "New evidence on walking distances to transit stops: identifying redundancies and gaps using variable service areas," Transportation, Springer, vol. 41(1), pages 193-210, January.
    13. Nasri, Arefeh & Zhang, Lei, 2014. "The analysis of transit-oriented development (TOD) in Washington, D.C. and Baltimore metropolitan areas," Transport Policy, Elsevier, vol. 32(C), pages 172-179.
    14. Cervero, Robert, 1989. "Land-Use Mixing and Suburban Mobility," University of California Transportation Center, Working Papers qt4nf7k1v9, University of California Transportation Center.
    15. Karst T. Geurs & Kevin J. Krizek & Aura Reggiani, 2012. "Accessibility analysis and transport planning: an introduction," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 1, pages 1-12, Edward Elgar Publishing.
    16. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2014. "Advance transit oriented development typology: case study in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 34(C), pages 54-70.
    17. Yingcheng Li & Nicholas Phelps, 2018. "Megalopolis unbound: Knowledge collaboration and functional polycentricity within and beyond the Yangtze River Delta Region in China, 2014," Urban Studies, Urban Studies Journal Limited, vol. 55(2), pages 443-460, February.
    18. Freke Caset & David S. Vale & Cláudia M. Viana, 2018. "Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: a Node-Place Modeling Approach," Networks and Spatial Economics, Springer, vol. 18(3), pages 495-530, September.
    19. Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), 2012. "Accessibility Analysis and Transport Planning," Books, Edward Elgar Publishing, number 14718.
    20. McMillen, Daniel P., 2001. "Nonparametric Employment Subcenter Identification," Journal of Urban Economics, Elsevier, vol. 50(3), pages 448-473, November.
    21. Vale, David S., 2015. "Transit-oriented development, integration of land use and transport, and pedestrian accessibility: Combining node-place model with pedestrian shed ratio to evaluate and classify station areas in Lisbo," Journal of Transport Geography, Elsevier, vol. 45(C), pages 70-80.
    22. Freke Caset & David S. Vale & Cláudia M. Viana, 2018. "Correction to: Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: a Node-Place Modeling Approach," Networks and Spatial Economics, Springer, vol. 18(3), pages 531-531, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Zhou, Mingzhi & Zhou, Jiali & Zhou, Jiangping & Lei, Shuyu & Zhao, Zhan, 2023. "Introducing social contacts into the node-place model: A case study of Hong Kong," Journal of Transport Geography, Elsevier, vol. 107(C).
    3. Cummings, Christopher & Mahmassani, Hani, 2022. "Does intercity rail station placement matter? Expansion of the node-place model to identify station location impacts on Amtrak ridership," Journal of Transport Geography, Elsevier, vol. 99(C).
    4. Caset, Freke & Blainey, Simon & Derudder, Ben & Boussauw, Kobe & Witlox, Frank, 2020. "Integrating node-place and trip end models to explore drivers of rail ridership in Flanders, Belgium," Journal of Transport Geography, Elsevier, vol. 87(C).
    5. Ying Liang & Wei Song & Xiaofeng Dong, 2021. "Evaluating the Space Use of Large Railway Hub Station Areas in Beijing toward Integrated Station-City Development," Land, MDPI, vol. 10(11), pages 1-22, November.
    6. Wei Wu & Prasanna Divigalpitiya, 2022. "Assessment of Accessibility and Activity Intensity to Identify Future Development Priority TODs in Hefei City," Land, MDPI, vol. 11(9), pages 1-17, September.
    7. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    8. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    9. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    10. Chan, Ho-Yin & Chen, Anthony & Li, Guoyuan & Xu, Xiangdong & Lam, William, 2021. "Evaluating the value of new metro lines using route diversity measures: The case of Hong Kong's Mass Transit Railway system," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    12. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
    13. Yaqi Hu & Yingzi Chen, 2022. "Coupling of Urban Economic Development and Transportation System: An Urban Agglomeration Case," Sustainability, MDPI, vol. 14(7), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nigro, Antonio & Bertolini, Luca & Moccia, Francesco Domenico, 2019. "Land use and public transport integration in small cities and towns: Assessment methodology and application," Journal of Transport Geography, Elsevier, vol. 74(C), pages 110-124.
    2. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    3. Ibraeva, Anna & Correia, Gonçalo Homem de Almeida & Silva, Cecília & Antunes, António Pais, 2020. "Transit-oriented development: A review of research achievements and challenges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 110-130.
    4. Li, Zekun & Han, Zixuan & Xin, Jing & Luo, Xin & Su, Shiliang & Weng, Min, 2019. "Transit oriented development among metro station areas in Shanghai, China: Variations, typology, optimization and implications for land use planning," Land Use Policy, Elsevier, vol. 82(C), pages 269-282.
    5. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    6. Yingqun Zhang & Rui Song & Rob van Nes & Shiwei He & Weichuan Yin, 2019. "Identifying Urban Structure Based on Transit-Oriented Development," Sustainability, MDPI, vol. 11(24), pages 1-21, December.
    7. Liu, Yunzhe & Singleton, Alex & Arribas-Bel, Daniel, 2020. "Considering context and dynamics: A classification of transit-orientated development for New York City," Journal of Transport Geography, Elsevier, vol. 85(C).
    8. Jeffrey, Dana & Boulangé, Claire & Giles-Corti, Billie & Washington, Simon & Gunn, Lucy, 2019. "Using walkability measures to identify train stations with the potential to become transit oriented developments located in walkable neighbourhoods," Journal of Transport Geography, Elsevier, vol. 76(C), pages 221-231.
    9. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.
    10. Pezeshknejad, Parsa & Monajem, Saeed & Mozafari, Hamid, 2020. "Evaluating sustainability and land use integration of BRT stations via extended node place model, an application on BRT stations of Tehran," Journal of Transport Geography, Elsevier, vol. 82(C).
    11. Singh, Yamini Jain & Lukman, Azhari & Flacke, Johannes & Zuidgeest, Mark & Van Maarseveen, M.F.A.M., 2017. "Measuring TOD around transit nodes - Towards TOD policy," Transport Policy, Elsevier, vol. 56(C), pages 96-111.
    12. Chen, Zhiheng & Li, Peiran & Jin, YanXiu & Bharule, Shreyas & Jia, Ning & Li, Wenjing & Song, Xuan & Shibasaki, Ryosuke & Zhang, Haoran, 2023. "Using mobile phone big data to identify inequity of aging groups in transit-oriented development station usage: A case of Tokyo," Transport Policy, Elsevier, vol. 132(C), pages 65-75.
    13. Freke Caset & David S. Vale & Cláudia M. Viana, 2018. "Measuring the Accessibility of Railway Stations in the Brussels Regional Express Network: a Node-Place Modeling Approach," Networks and Spatial Economics, Springer, vol. 18(3), pages 495-530, September.
    14. Wei Wu & Prasanna Divigalpitiya, 2022. "Assessment of Accessibility and Activity Intensity to Identify Future Development Priority TODs in Hefei City," Land, MDPI, vol. 11(9), pages 1-17, September.
    15. Lahoorpoor, Bahman & Levinson, David M., 2020. "Catchment if you can: The effect of station entrance and exit locations on accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    16. Kim, Hyojin & Sultana, Selima & Weber, Joe, 2018. "A geographic assessment of the economic development impact of Korean high-speed rail stations," Transport Policy, Elsevier, vol. 66(C), pages 127-137.
    17. Weustenenk, Anne Gerda & Mingardo, Giuliano, 2023. "Towards a typology of mobility hubs," Journal of Transport Geography, Elsevier, vol. 106(C).
    18. Lyu, Guowei & Bertolini, Luca & Pfeffer, Karin, 2016. "Developing a TOD typology for Beijing metro station areas," Journal of Transport Geography, Elsevier, vol. 55(C), pages 40-50.
    19. Zhang, Yuerong & Marshall, Stephen & Manley, Ed, 2021. "Understanding the roles of rail stations: Insights from network approaches in the London metropolitan area," Journal of Transport Geography, Elsevier, vol. 94(C).
    20. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:79:y:2019:i:c:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.