IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v48y2015icp30-40.html
   My bibliography  Save this article

Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul

Author

Listed:
  • Jun, Myung-Jin
  • Choi, Keechoo
  • Jeong, Ji-Eun
  • Kwon, Ki-Hyun
  • Kim, Hee-Jae

Abstract

This study has dual research objectives: 1) to evaluate the land use characteristics of the pedestrian catchment areas (PCA) of subway stations in the Seoul metropolitan area (SMA) in terms of transit-oriented development (TOD) principles and 2) to investigate the influence of each PCA's land use characteristics on station-level ridership. The major findings can be summarized as follows. First, the built environments of subway PCAs in Seoul were found to be compatible with TOD principles in terms of density and diversity. They have declining density gradients of population and employment that extend outward from a station and have a high level of mixed-use land.

Suggested Citation

  • Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
  • Handle: RePEc:eee:jotrge:v:48:y:2015:i:c:p:30-40
    DOI: 10.1016/j.jtrangeo.2015.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692315001350
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2015.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Estupiñán, Nicolás & Rodri­guez, Daniel A., 2008. "The relationship between urban form and station boardings for Bogotá's BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 296-306, February.
    2. Gutiérrez, Javier & Cardozo, Osvaldo Daniel & García-Palomares, Juan Carlos, 2011. "Transit ridership forecasting at station level: an approach based on distance-decay weighted regression," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1081-1092.
    3. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    4. Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
    5. Gregory Thompson & Jeffrey Brown & Torsha Bhattacharya, 2012. "What Really Matters for Increasing Transit Ridership: Understanding the Determinants of Transit Ridership Demand in Broward County, Florida," Urban Studies, Urban Studies Journal Limited, vol. 49(15), pages 3327-3345, November.
    6. Fielding, Gordon J., 1995. "Congestion Pricing and the Future of Transit," University of California Transportation Center, Working Papers qt0g332530, University of California Transportation Center.
    7. Taylor, Brian D. & Miller, Douglas & Iseki, Hiroyuki & Fink, Camille, 2003. "Analyzing the Determinants of Transit Ridership Using a Two-Stage Least Squares Regression on a National Sample of Urbanized Areas," University of California Transportation Center, Working Papers qt7xf3q4vh, University of California Transportation Center.
    8. Boarnet, Marlon & Crane, Randall, 2001. "The influence of land use on travel behavior: specification and estimation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 823-845, November.
    9. Jiang, Yang & Christopher Zegras, P. & Mehndiratta, Shomik, 2012. "Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China," Journal of Transport Geography, Elsevier, vol. 20(1), pages 1-14.
    10. Jinkyung Choi & Yong Lee & Taewan Kim & Keemin Sohn, 2012. "An analysis of Metro ridership at the station-to-station level in Seoul," Transportation, Springer, vol. 39(3), pages 705-722, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    2. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    3. Yuxin He & Yang Zhao & Kwok Leung Tsui, 2021. "An adapted geographically weighted LASSO (Ada-GWL) model for predicting subway ridership," Transportation, Springer, vol. 48(3), pages 1185-1216, June.
    4. Daeyoung Kwon & Sung Eun Sally Oh & Sangwon Choi & Brian H. S. Kim, 2023. "Viability of compact cities in the post-COVID-19 era: subway ridership variations in Seoul Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 71(1), pages 175-203, August.
    5. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    6. Kepaptsoglou, Konstantinos & Stathopoulos, Antony & Karlaftis, Matthew G., 2017. "Ridership estimation of a new LRT system: Direct demand model approach," Journal of Transport Geography, Elsevier, vol. 58(C), pages 146-156.
    7. Vergel-Tovar, C. Erik & Rodriguez, Daniel A., 2018. "The ridership performance of the built environment for BRT systems: Evidence from Latin America," Journal of Transport Geography, Elsevier, vol. 73(C), pages 172-184.
    8. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    9. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    10. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.
    11. Iseki, Hiroyuki & Liu, Chao & Knaap, Gerrit, 2018. "The determinants of travel demand between rail stations: A direct transit demand model using multilevel analysis for the Washington D.C. Metrorail system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 635-649.
    12. Chakrabarti, Sandip, 2015. "The demand for reliable transit service: New evidence using stop level data from the Los Angeles Metro bus system," Journal of Transport Geography, Elsevier, vol. 48(C), pages 154-164.
    13. Andersson, David Emanuel & Shyr, Oliver F. & Yang, Jimmy, 2021. "Neighbourhood effects on station-level transit use: Evidence from the Taipei metro," Journal of Transport Geography, Elsevier, vol. 94(C).
    14. Mamun, Sha A. & Lownes, Nicholas E. & Osleeb, Jeffrey P. & Bertolaccini, Kelly, 2013. "A method to define public transit opportunity space," Journal of Transport Geography, Elsevier, vol. 28(C), pages 144-154.
    15. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    16. Wasserman, Jacob L. & Taylor, Brian D., 2023. "State of the BART: Analyzing the Determinants of Bay Area Rapid Transit Use in the 2010s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    17. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    18. Kim, Jinwon & Brownstone, David, 2013. "The impact of residential density on vehicle usage and fuel consumption: Evidence from national samples," Energy Economics, Elsevier, vol. 40(C), pages 196-206.
    19. Merkebe Getachew Demissie & Lina Kattan, 2022. "Understanding the temporal and spatial interactions between transit ridership and urban land-use patterns: an exploratory study," Public Transport, Springer, vol. 14(2), pages 385-417, June.
    20. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:48:y:2015:i:c:p:30-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.