IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v72y2018icp50-63.html
   My bibliography  Save this article

How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas

Author

Listed:
  • Ingvardson, Jesper Bláfoss
  • Nielsen, Otto Anker

Abstract

Understanding the determinants of public transport ridership is important in order to plan attractive public transport systems efficiently. This study analyses at a meta-level per capita public transport ridership across 48 European cities based on a rich database collected as part of this study. The dataset includes detailed mode-specific information about the public transport networks, hence extending previous research by analysing each public transport mode separately while simultaneously taking into account the main determinants of ridership identified by a thorough literature review of 36 previous studies, e.g. urban demographics and land uses. Factor analysis was deployed revealing four main composite determinants, namely i) metro coverage, network connectivity, and urban density, ii) suburban rail coverage, iii) economic inequality, and iv) light rail coverage. Subsequent multiple regression analysis confirmed the a priori hypothesis of per capita ridership being positively associated with the extent of network coverage in terms of metro, suburban rail and light rail transit. The importance of network connectivity was included with results suggesting that the number of transfer stations was more important than the cyclomatic number of the public transport network. Cities with higher economic inequality in terms of higher unemployment, lower per capita GDP and higher GINI-coefficient showed lower public transport ridership. Finally, the analyses highlighted the importance of proper definitions of urban areas in order to perform consistent analyses of data across cities. This revealed the impact on transit ridership of urban density defined as population and especially job intensity per km2. As the study is based on aggregate, cross-sectional data from a relatively small sample of European cities, it is not without limitations in terms of mainly revealing correlational structures rather than causations as well as not including all variables related to public transport ridership. Future studies should further investigate these interrelationships before drawing conclusions on the causational relationships.

Suggested Citation

  • Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
  • Handle: RePEc:eee:jotrge:v:72:y:2018:i:c:p:50-63
    DOI: 10.1016/j.jtrangeo.2018.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096669231730769X
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2018.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Derrible, Sybil & Kennedy, Christopher, 2010. "The complexity and robustness of metro networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3678-3691.
    2. Zhang, X. & Miller-Hooks, E. & Denny, K., 2015. "Assessing the role of network topology in transportation network resilience," Journal of Transport Geography, Elsevier, vol. 46(C), pages 35-45.
    3. Gutiérrez, Javier & Cardozo, Osvaldo Daniel & García-Palomares, Juan Carlos, 2011. "Transit ridership forecasting at station level: an approach based on distance-decay weighted regression," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1081-1092.
    4. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    5. Chakour, Vincent & Eluru, Naveen, 2016. "Examining the influence of stop level infrastructure and built environment on bus ridership in Montreal," Journal of Transport Geography, Elsevier, vol. 51(C), pages 205-217.
    6. Crampton, Graham, 2002. "International comparison of urban light rail systems: The role of integrated ticketing, pedestrianistion and population density," ERSA conference papers ersa02p167, European Regional Science Association.
    7. Buehler, Ralph, 2011. "Determinants of transport mode choice: a comparison of Germany and the USA," Journal of Transport Geography, Elsevier, vol. 19(4), pages 644-657.
    8. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    9. Cervero, Robert & Murakami, Jin, 2008. "Rail + Property Development: A model of sustainable transit finance and urbanism," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6jx3k35x, Institute of Transportation Studies, UC Berkeley.
    10. Gregory Thompson & Jeffrey Brown & Torsha Bhattacharya, 2012. "What Really Matters for Increasing Transit Ridership: Understanding the Determinants of Transit Ridership Demand in Broward County, Florida," Urban Studies, Urban Studies Journal Limited, vol. 49(15), pages 3327-3345, November.
    11. Cadarso, Luis & Marín, Ángel & Maróti, Gábor, 2013. "Recovery of disruptions in rapid transit networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 15-33.
    12. Souche, Stéphanie, 2010. "Measuring the structural determinants of urban travel demand," Transport Policy, Elsevier, vol. 17(3), pages 127-134, May.
    13. G. Currie & A. Ahern & A. Delbosc, 2011. "Exploring the drivers of light rail ridership: an empirical route level analysis of selected Australian, North American and European systems," Transportation, Springer, vol. 38(3), pages 545-560, May.
    14. Holmgren, Johan, 2007. "Meta-analysis of public transport demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1021-1035, December.
    15. Kaplan, Sigal & Popoks, Dmitrijs & Prato, Carlo Giacomo & Ceder, Avishai (Avi), 2014. "Using connectivity for measuring equity in transit provision," Journal of Transport Geography, Elsevier, vol. 37(C), pages 82-92.
    16. Cats, O., 2016. "The robustness value of public transport development plans," Journal of Transport Geography, Elsevier, vol. 51(C), pages 236-246.
    17. Zhang, Dapeng & Wang, Xiaokun (Cara), 2014. "Transit ridership estimation with network Kriging: a case study of Second Avenue Subway, NYC," Journal of Transport Geography, Elsevier, vol. 41(C), pages 107-115.
    18. Currie, Graham & Delbosc, Alexa, 2011. "Understanding bus rapid transit route ridership drivers: An empirical study of Australian BRT systems," Transport Policy, Elsevier, vol. 18(5), pages 755-764, September.
    19. Rahman, Syed & Balijepalli, Chandra, 2016. "Understanding the determinants of demand for public transport: Evidence from suburban rail operations in five divisions of Indian Railways," Transport Policy, Elsevier, vol. 48(C), pages 13-22.
    20. Jinkyung Choi & Yong Lee & Taewan Kim & Keemin Sohn, 2012. "An analysis of Metro ridership at the station-to-station level in Seoul," Transportation, Springer, vol. 39(3), pages 705-722, May.
    21. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray & Diane Snediker, 2008. "Comparative Approaches for Assessing Network Vulnerability," International Regional Science Review, , vol. 31(1), pages 88-112, January.
    22. Eloy Solís Trapero & Inmaculada Mohíno Sanz & José María de Ureña Francés, 2015. "Global Metropolitan-Regional Scale in Evolution: Metropolitan Intermediary Cities and Metropolitan Cities," European Planning Studies, Taylor & Francis Journals, vol. 23(3), pages 568-596, March.
    23. Chiou, Yu-Chiun & Jou, Rong-Chang & Yang, Cheng-Han, 2015. "Factors affecting public transportation usage rate: Geographically weighted regression," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 161-177.
    24. Cordera, Ruben & Canales, Cesar & dell’Olio, Luigi & Ibeas, Angel, 2015. "Public transport demand elasticities during the recessionary phases of economic cycles," Transport Policy, Elsevier, vol. 42(C), pages 173-179.
    25. Hadas, Yuval & Ranjitkar, Prakash, 2012. "Modeling public-transit connectivity with spatial quality-of-transfer measurements," Journal of Transport Geography, Elsevier, vol. 22(C), pages 137-147.
    26. Blainey, Simon, 2010. "Trip end models of local rail demand in England and Wales," Journal of Transport Geography, Elsevier, vol. 18(1), pages 153-165.
    27. Sung, Hyungun & Choi, Keechoo & Lee, Sugie & Cheon, SangHyun, 2014. "Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership," Journal of Transport Geography, Elsevier, vol. 36(C), pages 134-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesper Bláfoss Ingvardson & Otto Anker Nielsen, 2022. "The influence of vicinity to stations, station characteristics and perceived safety on public transport mode choice: a case study from Copenhagen," Public Transport, Springer, vol. 14(2), pages 459-480, June.
    2. Audronė Minelgaitė & Renata Dagiliūtė & Genovaitė Liobikienė, 2020. "The Usage of Public Transport and Impact of Satisfaction in the European Union," Sustainability, MDPI, vol. 12(21), pages 1-13, November.
    3. Jiangyue Wu & Jiangping Zhou & Hanxi Ma, 2022. "Revisiting the valuable locales in our cities? Visualizing social interaction potential around metro station areas in Wuhan, China," Environment and Planning A, , vol. 54(3), pages 433-436, May.
    4. Berrebi, Simon J. & Joshi, Sanskruti & Watkins, Kari E., 2021. "On bus ridership and frequency," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 140-154.
    5. Simon Berrebi & Sanskruti Joshi & Kari E Watkins, 2020. "On Ridership and Frequency," Papers 2002.02493, arXiv.org, revised Apr 2021.
    6. Jurkowski Wojciech & Smolarski Mateusz, 2021. "The influence of transport offer on passenger traffic in the railway transport system in a post-socialist country: case study of Poland," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 53(53), pages 33-42, September.
    7. Gascon, Mireia & Marquet, Oriol & Gràcia-Lavedan, Esther & Ambròs, Albert & Götschi, Thomas & Nazelle, Audrey de & Panis, Luc Int & Gerike, Regine & Brand, Christian & Dons, Evi & Eriksson, Ulf & Iaco, 2020. "What explains public transport use? Evidence from seven European cities," Transport Policy, Elsevier, vol. 99(C), pages 362-374.
    8. Vigren, Andreas & Pyddoke, Roger, 2020. "The impact on bus ridership of passenger incentive contracts in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 144-159.
    9. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    10. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Brands, Ties & van Oort, Niels & Teller, David, 2021. "Multi-city exploration of built environment and transit mode use: Comparison of Melbourne, Amsterdam and Boston," Journal of Transport Geography, Elsevier, vol. 95(C).
    11. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    12. Schasché, Stephanie E. & Sposato, Robert G. & Hampl, Nina, 2022. "The dilemma of demand-responsive transport services in rural areas: Conflicting expectations and weak user acceptance," Transport Policy, Elsevier, vol. 126(C), pages 43-54.
    13. Yang, Chao & Yu, Chengcheng & Dong, Wentao & Yuan, Quan, 2023. "Substitutes or complements? Examining effects of urban rail transit on bus ridership using longitudinal city-level data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    14. Jiaoe Wang & Yanan Li & Jingjuan Jiao & Haitao Jin & Fangye Du, 2023. "Bus ridership and its determinants in Beijing: A spatial econometric perspective," Transportation, Springer, vol. 50(2), pages 383-406, April.
    15. Jean-Philippe Meloche & Vincent Trotignon & François Vaillancourt, 2021. "Densification ou prolongement des réseaux de transport structurants ? Une recension des écrits sur les coûts et les bénéfices attendus," CIRANO Project Reports 2020rp-28, CIRANO.
    16. Teoh, Roger & Anciaes, Paulo & Jones, Peter, 2020. "Urban mobility transitions through GDP growth: Policy choices facing cities in developing countries," Journal of Transport Geography, Elsevier, vol. 88(C).
    17. Georgios Georgiadis & Ioannis Politis & Panagiotis Papaioannou, 2020. "How Does Operational Environment Influence Public Transport Effectiveness? Evidence from European Urban Bus Operators," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    18. Enoch, M.P. & Cross, R. & Potter, N. & Davidson, C. & Taylor, S. & Brown, R. & Huang, H. & Parsons, J. & Tucker, S. & Wynne, E. & Grieg, D. & Campbell, G. & Jackson, A. & Potter, S., 2020. "Future local passenger transport system scenarios and implications for policy and practice," Transport Policy, Elsevier, vol. 90(C), pages 52-67.
    19. Chen, Junlan & Pu, Ziyuan & Guo, Xiucheng & Cao, Jieyu & Zhang, Fang, 2023. "Multiperiod metro timetable optimization based on the complex network and dynamic travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    2. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    3. Jiaoe Wang & Yanan Li & Jingjuan Jiao & Haitao Jin & Fangye Du, 2023. "Bus ridership and its determinants in Beijing: A spatial econometric perspective," Transportation, Springer, vol. 50(2), pages 383-406, April.
    4. Jesper Bláfoss Ingvardson & Otto Anker Nielsen, 2022. "The influence of vicinity to stations, station characteristics and perceived safety on public transport mode choice: a case study from Copenhagen," Public Transport, Springer, vol. 14(2), pages 459-480, June.
    5. Kepaptsoglou, Konstantinos & Stathopoulos, Antony & Karlaftis, Matthew G., 2017. "Ridership estimation of a new LRT system: Direct demand model approach," Journal of Transport Geography, Elsevier, vol. 58(C), pages 146-156.
    6. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    7. Diab, Ehab & Kasraian, Dena & Miller, Eric J. & Shalaby, Amer, 2020. "The rise and fall of transit ridership across Canada: Understanding the determinants," Transport Policy, Elsevier, vol. 96(C), pages 101-112.
    8. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    9. Chiou, Yu-Chiun & Jou, Rong-Chang & Yang, Cheng-Han, 2015. "Factors affecting public transportation usage rate: Geographically weighted regression," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 161-177.
    10. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    11. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    12. Yuxin He & Yang Zhao & Kwok Leung Tsui, 2021. "An adapted geographically weighted LASSO (Ada-GWL) model for predicting subway ridership," Transportation, Springer, vol. 48(3), pages 1185-1216, June.
    13. Yadi Zhu & Feng Chen & Zijia Wang & Jin Deng, 2019. "Spatio-temporal analysis of rail station ridership determinants in the built environment," Transportation, Springer, vol. 46(6), pages 2269-2289, December.
    14. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    15. Vergel-Tovar, C. Erik & Rodriguez, Daniel A., 2018. "The ridership performance of the built environment for BRT systems: Evidence from Latin America," Journal of Transport Geography, Elsevier, vol. 73(C), pages 172-184.
    16. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.
    17. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    18. Yang, Chao & Yu, Chengcheng & Dong, Wentao & Yuan, Quan, 2023. "Substitutes or complements? Examining effects of urban rail transit on bus ridership using longitudinal city-level data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    19. Andersson, David Emanuel & Shyr, Oliver F. & Yang, Jimmy, 2021. "Neighbourhood effects on station-level transit use: Evidence from the Taipei metro," Journal of Transport Geography, Elsevier, vol. 94(C).
    20. Karnberger, Stephan & Antoniou, Constantinos, 2020. "Network–wide prediction of public transportation ridership using spatio–temporal link–level information," Journal of Transport Geography, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:72:y:2018:i:c:p:50-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.