IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3164-d237384.html
   My bibliography  Save this article

A SEM–Neural Network Approach to Predict Customers’ Intention to Purchase Battery Electric Vehicles in China’s Zhejiang Province

Author

Listed:
  • Yueling Xu

    (China Institute of Regulation Research, Zhejiang University of Finance and Economics, Hangzhou 310018, China)

  • Wenyu Zhang

    (School of Information, Zhejiang University of Finance and Economics, Hangzhou 310018, China)

  • Haijun Bao

    (China Institute of Regulation Research, Zhejiang University of Finance and Economics, Hangzhou 310018, China
    School of Public Administration, Zhejiang University of Finance and Economics, Hangzhou 310018, China)

  • Shuai Zhang

    (School of Information, Zhejiang University of Finance and Economics, Hangzhou 310018, China)

  • Ying Xiang

    (School of Data Sciences, Zhejiang University of Finance and Economics, Hangzhou 310018, China)

Abstract

As part of the increasing efforts toward the prevention and control of motor vehicle pollution, the Chinese government has practiced a range of policies to stimulate the purchase and use of battery electric vehicles (BEVs). Zhejiang Province, a key province in China, has proactively implemented and monitored an environmental protection plan. This study aims to contribute toward streamlining marketing and planning activities to introduce strategic policies that stimulate the purchase and use of BEVs. This study considers the nature of human behavior by extending the theory of planned behavior model to identify its predictors, as well as its non-linear relationship with customers’ purchase intention. To better understand the predictors, a substantial literature review was given to validate the hypotheses. A quantitative study using 382 surveys completed by customers in Zhejiang Province was conducted by integrating a structural equation model (SEM) and a neural network (NN). The initial analysis results from the SEM revealed five factors that have impacted the customers’ purchase intention of BEVs. In the second phase, the normalized importance among those five significant predictors was ranked using the NN. The findings have provided theoretical implications to scholars and academics, and managerial implications to enterprises, and are also helpful for decision makers to implement appropriate policies to promote the purchase intention of BEVs, thereby improving the air quality.

Suggested Citation

  • Yueling Xu & Wenyu Zhang & Haijun Bao & Shuai Zhang & Ying Xiang, 2019. "A SEM–Neural Network Approach to Predict Customers’ Intention to Purchase Battery Electric Vehicles in China’s Zhejiang Province," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3164-:d:237384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McCarty, John A. & Shrum, L. J., 1994. "The recycling of solid wastes: Personal values, value orientations, and attitudes about recycling as antecedents of recycling behavior," Journal of Business Research, Elsevier, vol. 30(1), pages 53-62, May.
    2. Palos-Sanchez, Pedro & Saura, Jose Ramon & Martin-Velicia, Felix, 2019. "A study of the effects of programmatic advertising on users' concerns about privacy overtime," Journal of Business Research, Elsevier, vol. 96(C), pages 61-72.
    3. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    4. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    5. Samuel Brody & Himanshu Grover & Arnold Vedlitz, 2012. "Examining the willingness of Americans to alter behaviour to mitigate climate change," Climate Policy, Taylor & Francis Journals, vol. 12(1), pages 1-22, January.
    6. Peng Jing & Hao Huang & Bin Ran & Fengping Zhan & Yuji Shi, 2019. "Exploring the Factors Affecting Mode Choice Intention of Autonomous Vehicle Based on an Extended Theory of Planned Behavior—A Case Study in China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    7. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Institute of Transportation Studies, Working Paper Series qt02n9j6cv, Institute of Transportation Studies, UC Davis.
    8. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    9. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    10. Arie Beresteanu & Shanjun Li, 2011. "Gasoline Prices, Government Support, And The Demand For Hybrid Vehicles In The United States," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 161-182, February.
    11. Gleim, Mark R. & Smith, Jeffery S. & Andrews, Demetra & Cronin, J. Joseph, 2013. "Against the Green: A Multi-method Examination of the Barriers to Green Consumption," Journal of Retailing, Elsevier, vol. 89(1), pages 44-61.
    12. Mau, Paulus & Eyzaguirre, Jimena & Jaccard, Mark & Collins-Dodd, Colleen & Tiedemann, Kenneth, 2008. "The 'neighbor effect': Simulating dynamics in consumer preferences for new vehicle technologies," Ecological Economics, Elsevier, vol. 68(1-2), pages 504-516, December.
    13. Egnér, Filippa & Trosvik, Lina, 2018. "Electric vehicle adoption in Sweden and the impact of local policy instruments," Energy Policy, Elsevier, vol. 121(C), pages 584-596.
    14. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    15. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    16. Chandra, Ambarish & Gulati, Sumeet & Kandlikar, Milind, 2010. "Green drivers or free riders? An analysis of tax rebates for hybrid vehicles," Journal of Environmental Economics and Management, Elsevier, vol. 60(2), pages 78-93, September.
    17. Bunce, Louise & Harris, Margaret & Burgess, Mark, 2014. "Charge up then charge out? Drivers’ perceptions and experiences of electric vehicles in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 278-287.
    18. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    19. Lei Yang & Caixia Hao & Yina Chai, 2018. "Life Cycle Assessment of Commercial Delivery Trucks: Diesel, Plug-In Electric, and Battery-Swap Electric," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    20. Peng Yu & Jian Zhang & Defang Yang & Xin Lin & Tianying Xu, 2019. "The Evolution of China’s New Energy Vehicle Industry from the Perspective of a Technology–Market–Policy Framework," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    21. Zhang, Xian & Wang, Ke & Hao, Yu & Fan, Jing-Li & Wei, Yi-Ming, 2013. "The impact of government policy on preference for NEVs: The evidence from China," Energy Policy, Elsevier, vol. 61(C), pages 382-393.
    22. Huiming Gong & Michael Wang & Hewu Wang, 2013. "New energy vehicles in China: policies, demonstration, and progress," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(2), pages 207-228, February.
    23. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    24. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    25. Sun, Baohong & Morwitz, Vicki G., 2010. "Stated intentions and purchase behavior: A unified model," International Journal of Research in Marketing, Elsevier, vol. 27(4), pages 356-366.
    26. Paul, Justin & Modi, Ashwin & Patel, Jayesh, 2016. "Predicting green product consumption using theory of planned behavior and reasoned action," Journal of Retailing and Consumer Services, Elsevier, vol. 29(C), pages 123-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Kosmas & Theofanis Papadopoulos & Georgia Dede & Christos Michalakelis, 2023. "The Use of Artificial Neural Networks in the Public Sector," FinTech, MDPI, vol. 2(1), pages 1-15, March.
    2. Gulnaz Ivanova & António Carrizo Moreira, 2023. "Antecedents of Electric Vehicle Purchase Intention from the Consumer’s Perspective: A Systematic Literature Review," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    3. Abdulaziz Alshammari & Rakan C. Chabaan, 2023. "Metaheruistic Optimization Based Ensemble Machine Learning Model for Designing Detection Coil with Prediction of Electric Vehicle Charging Time," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    4. ShiYong Zheng & Hua Liu & Weili Guan & Yuping Yang & JiaYing Li & Shah Fahad & Biqing Li, 2022. "Identifying Intention-Based Factors Influencing Consumers’ Willingness to Pay for Electric Vehicles: A Sustainable Consumption Paradigm," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    5. Matthew Wigginton Bhagat-Conway & Laura Mirtich & Deborah Salon & Nathan Harness & Alexis Consalvo & Shuyao Hong, 2024. "Subjective variables in travel behavior models: a critical review and Standardized Transport Attitude Measurement Protocol (STAMP)," Transportation, Springer, vol. 51(1), pages 155-191, February.
    6. Leibao Zhang & Qiuxian Hu & Shuai Zhang & Wenyu Zhang, 2020. "Understanding Chinese Residents’ Waste Classification from a Perspective of Intention–Behavior Gap," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    7. Leibao Zhang & Liming Sheng & Wenyu Zhang & Shuai Zhang, 2020. "Do Personal Norms Predict Citizens’ Acceptance of Green Transport Policies in China," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    8. Kathrin Monika Buhmann & Josep Rialp-Criado & Alex Rialp-Criado, 2024. "Predicting Consumer Intention to Adopt Battery Electric Vehicles: Extending the Theory of Planned Behavior," Sustainability, MDPI, vol. 16(3), pages 1-24, February.
    9. Ziwen Ling & Christopher R. Cherry & Yi Wen, 2021. "Determining the Factors That Influence Electric Vehicle Adoption: A Stated Preference Survey Study in Beijing, China," Sustainability, MDPI, vol. 13(21), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egnér, Filippa & Trosvik, Lina, 2018. "Electric vehicle adoption in Sweden and the impact of local policy instruments," Energy Policy, Elsevier, vol. 121(C), pages 584-596.
    2. Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
    3. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    4. Garth Heutel & Erich Muehlegger, 2015. "Consumer Learning and Hybrid Vehicle Adoption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(1), pages 125-161, September.
    5. Mustafa Hamurcu & Tamer Eren, 2023. "Multicriteria decision making and goal programming for determination of electric automobile aimed at sustainable green environment: a case study," Environment Systems and Decisions, Springer, vol. 43(2), pages 211-231, June.
    6. Chandra, Minal, 2022. "Investigating the impact of policies, socio-demography and national commitments on electric-vehicle demand: Cross-country study," Journal of Transport Geography, Elsevier, vol. 103(C).
    7. Yan, Shiyu, 2018. "The economic and environmental impacts of tax incentives for battery electric vehicles in Europe," Energy Policy, Elsevier, vol. 123(C), pages 53-63.
    8. Sun, Shanxia & Delgado, Michael S. & Khanna, Neha, 2019. "Hybrid vehicles, social signals and household driving: Implications for miles traveled and gasoline consumption," Energy Economics, Elsevier, vol. 84(C).
    9. Requia, Weeberb J. & Adams, Matthew D. & Arain, Altaf & Koutrakis, Petros & Ferguson, Mark, 2017. "Carbon dioxide emissions of plug-in hybrid electric vehicles: A life-cycle analysis in eight Canadian cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1390-1396.
    10. Sommer, Stephan & Vance, Colin, 2021. "Do more chargers mean more electric cars?," Ruhr Economic Papers 893, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    11. Alali, Layla & Niesten, Eva & Gagliardi, Dimitri, 2022. "The impact of UK financial incentives on the adoption of electric fleets: The moderation effect of GDP change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 200-220.
    12. Yang, J. & Chen, F., 2021. "How are social-psychological factors related to consumer preferences for plug-in electric vehicles? Case studies from two cities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Moser, Andrea K., 2016. "Consumers' purchasing decisions regarding environmentally friendly products: An empirical analysis of German consumers," Journal of Retailing and Consumer Services, Elsevier, vol. 31(C), pages 389-397.
    14. Yan, Jianghui & Tseng, Fang-Mei & Lu, Louis Y.Y., 2018. "Developmental trajectories of new energy vehicle research in economic management: Main path analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 168-181.
    15. Jaiswal, Deepak & Kaushal, Vikrant & Kant, Rishi & Kumar Singh, Pankaj, 2021. "Consumer adoption intention for electric vehicles: Insights and evidence from Indian sustainable transportation," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    17. Xie, Fei & Lin, Zhenhong, 2017. "Market-driven automotive industry compliance with fuel economy and greenhouse gas standards: Analysis based on consumer choice," Energy Policy, Elsevier, vol. 108(C), pages 299-311.
    18. Axsen, Jonn & Kurani, Kenneth S., 2009. "Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants," Institute of Transportation Studies, Working Paper Series qt35w7s3jp, Institute of Transportation Studies, UC Davis.
    19. Tuğba Yeğin & Muhammad Ikram, 2022. "Analysis of Consumers’ Electric Vehicle Purchase Intentions: An Expansion of the Theory of Planned Behavior," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    20. Zhaohua Wang & Xiaoyang Dong, 2016. "Determinants and policy implications of residents’ new energy vehicle purchases: the evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 155-173, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3164-:d:237384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.