IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1590-d146582.html
   My bibliography  Save this article

Jevons’ Paradox and Efficient Irrigation Technology

Author

Listed:
  • Louis Sears

    (Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY 14853, USA)

  • Joseph Caparelli

    (Computing and Information Science, Cornell University, Ithaca, NY 14853, USA)

  • Clouse Lee

    (Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY 14853, USA)

  • Devon Pan

    (College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA)

  • Gillian Strandberg

    (Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY 14853, USA)

  • Linh Vuu

    (Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY 14853, USA)

  • C. -Y. Cynthia Lin Lawell

    (Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY 14853, USA)

Abstract

Water is one of our world’s most essential natural resources, but it is also a resource that is becoming increasingly scarce. The agricultural use of groundwater is particularly important to manage sustainably and well. However, popular and well-intentioned water conservation and management policies, including those that encourage the adoption of more efficient irrigation technology, may have unintended and possibly perverse consequences if policy-makers do not account for water users’ behavioral responses to their policies. In particular, a Jevons’ Paradox may arise, whereby a technology that enhances the efficiency of using a natural resource does not necessarily lead to less consumption of that resource. In this paper, we discuss efficient irrigation technology, Jevons’ Paradox, and the possible perverse consequences of incentive-based programs for agricultural groundwater conservation.

Suggested Citation

  • Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1590-:d:146582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey M. Peterson & Ya Ding, 2005. "Economic Adjustments to Groundwater Depletion in the High Plains: Do Water-Saving Irrigation Systems Save Water?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(1), pages 147-159.
    2. Ellis, John R. & Lacewell, Ronald D. & Reneau, Duane R., 1985. "Estimated Economic Impact From Adoption Of Water-Related Agricultural Technology," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 10(2), pages 1-15, December.
    3. Suter, Jordan F. & Bills, Nelson L. & Poe, Gregory L., 2004. "The Importance Of Spatial Data In Modeling Actual Enrollment In The Conservation Reserve Enhancement Program (Crep)," 2004 Annual meeting, August 1-4, Denver, CO 20151, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    5. Huffaker, Ray & Whittlesey, Norman, 2000. "The allocative efficiency and conservation potential of water laws encouraging investments in on-farm irrigation technology," Agricultural Economics, Blackwell, vol. 24(1), pages 47-60, December.
    6. Si, Shuyang & Lyu, Mingjie & Lin Lawell, C.-Y. Cynthia & Chen, Song, 2018. "The effects of energy-related policies on energy consumption in China," Energy Economics, Elsevier, vol. 76(C), pages 202-227.
    7. Rebecca Taylor & David Zilberman, 2017. "Diffusion of Drip Irrigation: The Case of California," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(1), pages 16-40.
    8. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    9. Steven M. Smith & Krister Andersson & Kelsey C. Cody & Michael Cox & Darren Ficklin, 2017. "Responding to a Groundwater Crisis: The Effects of Self-Imposed Economic Incentives," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 985-1023.
    10. Ribaudo, Marc O., 2017. "Conservation Programs Can Accomplish More with Less by Improving Cost-Effectiveness," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 32(4), December.
    11. Hendricks, Nathan P. & Peterson, Jeffrey M., 2012. "Fixed Effects Estimation of the Intensive and Extensive Margins of Irrigation Water Demand," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(1), pages 1-19, April.
    12. Stefan Koppmair & Menale Kassie & Matin Qaim, 2017. "The influence of farm input subsidies on the adoption of natural resource management technologies," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), pages 539-556, October.
    13. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    14. Margriet Caswell & Erik Lichtenberg & David Zilberman, 1990. "The Effects of Pricing Policies on Water Conservation and Drainage," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(4), pages 883-890.
    15. Louis Sears & David Lim & C.-Y. Cynthia Lin Lawell, 2018. "The Economics of Agricultural Groundwater Management Institutions: The Case of California," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21, July.
    16. Simanti Banerjee, 2018. "Improving Spatial Coordination Rates under the Agglomeration Bonus Scheme: A Laboratory Experiment with a Pecuniary and a Non-Pecuniary Mechanism (NUDGE)," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 172-197.
    17. Aurélien Dumont & Beatriz Mayor & Elena López-Gunn, 2013. "Is the rebound effect or Jevons paradox a useful concept for better management of water resources? Insights from the Irrigation Modernisation Process in Spain," Post-Print halshs-00991778, HAL.
    18. repec:ags:jrapmc:122312 is not listed on IDEAS
    19. C.-Y. Cynthia Lin Lawell, 2016. "The Management of Groundwater: Irrigation Efficiency, Policy, Institutions, and Externalities," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 247-259, October.
    20. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2010. "The Effect of Irrigation Technology on Groundwater Use," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 25(3), pages 1-6.
    21. Randall G. Monger & Jordan F. Suter & Dale T. Manning & Joel P. Schneekloth, 2018. "Retiring Land to Save Water: Participation in Colorado’s Republican River Conservation Reserve Enhancement Program," Land Economics, University of Wisconsin Press, vol. 94(1), pages 36-51.
    22. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    23. Jaroszewski, Laura & Poe, Gregory L. & Boisvert, Richard N., 2000. "Allocating Land To New York'S Conservation Reserve Enhancement Program To Maximize Net Environmental Benefits," 2000 Annual meeting, July 30-August 2, Tampa, FL 21882, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    24. Paul J. Ferraro & Michael K. Price, 2013. "Using Nonpecuniary Strategies to Influence Behavior: Evidence from a Large-Scale Field Experiment," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 64-73, March.
    25. Haoyang Li & Jinhua Zhao, 2018. "Rebound Effects of New Irrigation Technologies: The Role of Water Rights," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 786-808.
    26. Wallander, Steven, 2017. "USDA Water Conservation Efforts Reflect Regional Differences," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 32(4), November.
    27. Jordan F. Suter & Gregory L. Poe & Nelson L. Bills, 2008. "Do Landowners Respond to Land Retirement Incentives? Evidence from the Conservation Reserve Enhancement Program," Land Economics, University of Wisconsin Press, vol. 84(1), pages 17-30.
    28. Zhang, Jiangshan & Lin Lawell, C.-Y. Cynthia, 2017. "The macroeconomic rebound effect in China," Energy Economics, Elsevier, vol. 67(C), pages 202-212.
    29. Ferraro, Paul & Messer, Kent D. & Wu, Shang, 2017. "Applying Behavioral Insights to Improve Water Security," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 32(4), November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordán, Cristian & Speelman, Stijn, 2020. "On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources," Agricultural Water Management, Elsevier, vol. 236(C).
    2. Philippe Coent, 2023. "Payment for environmental services related to aquifers: a review of specific issues and existing programmes," Review of Agricultural, Food and Environmental Studies, Springer, vol. 104(3), pages 273-310, December.
    3. Kafle, Kashi & Balasubramanya, Soumya, 2021. "IFAD Research Series Issues 66 - Can perceptions of reduction in physical water availability affect irrigation behaviour? Evidence from Jordan," IFAD Research Series 313230, International Fund for Agricultural Development (IFAD).
    4. Drew, Mark & Crase, Lin, 2023. "‘More Crop per Drop’ and water use efficiency in the National Water Policy of Pakistan," Agricultural Water Management, Elsevier, vol. 288(C).
    5. Wang, Yanyun & Long, Aihua & Xiang, Liyun & Deng, Xiaoya & Zhang, Pei & Hai, Yang & Wang, Jie & Li, Yang, 2020. "The verification of Jevons’ paradox of agricultural Water conservation in Tianshan District of China based on Water footprint," Agricultural Water Management, Elsevier, vol. 239(C).
    6. Andreas Nicolaidis Lindqvist & Sarah Broberg & Linda Tufvesson & Sammar Khalil & Thomas Prade, 2019. "Bio-Based Production Systems: Why Environmental Assessment Needs to Include Supporting Systems," Sustainability, MDPI, vol. 11(17), pages 1-26, August.
    7. Cai, Wenjuan & Jiang, Xiaohui & Sun, Haotian & Lei, Yuxin & Nie, Tong & Li, Lichan, 2023. "Spatial scale effect of irrigation efficiency paradox based on water accounting framework in Heihe River Basin, Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    8. Maurizio Canavari & Marco Medici & Rungsaran Wongprawmas & Vilma Xhakollari & Silvia Russo, 2021. "A Path Model of the Intention to Adopt Variable Rate Irrigation in Northeast Italy," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    9. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    10. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    11. Whittemore, Donald O. & Butler, James J. & Bohling, Geoffrey C. & Wilson, Blake B., 2023. "Are we saving water? Simple methods for assessing the effectiveness of groundwater conservation measures," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Metta, Matteo & Ciliberti, Stefano & Obi, Chinedu & Bartolini, Fabio & Klerkx, Laurens & Brunori, Gianluca, 2022. "An integrated socio-cyber-physical system framework to assess responsible digitalisation in agriculture: A first application with Living Labs in Europe," Agricultural Systems, Elsevier, vol. 203(C).
    13. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    14. Catherine Laroche-Dupraz & Angela Cheptea, 2021. "Is irrigation driven by the price of internationally traded agricultural products?," Post-Print hal-03227465, HAL.
    15. Prasad, Pooja & Damani, Om P. & Sohoni, Milind, 2022. "How can resource-level thresholds guide sustainable intensification of agriculture at farm level? A system dynamics study of farm-pond based intensification," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Sebastian Lieder & Christoph Schröter-Schlaack, 2021. "Smart Farming Technologies in Arable Farming: Towards a Holistic Assessment of Opportunities and Risks," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    17. Saket Pande & Akshay Pandit, 2018. "Hydro-social metabolism: scaling of birth rate with regional water use," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louis Sears & David Lim & C.-Y. Cynthia Lin Lawell, 2018. "The Economics of Agricultural Groundwater Management Institutions: The Case of California," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-21, July.
    2. Bertone Oehninger, Ernst & Lin Lawell, C.-Y. Cynthia, 2021. "Property rights and groundwater management in the High Plains Aquifer," Resource and Energy Economics, Elsevier, vol. 63(C).
    3. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    4. Hang Xu & Rui Yang & Jianfeng Song, 2021. "Agricultural Water Use Efficiency and Rebound Effect: A Study for China," IJERPH, MDPI, vol. 18(13), pages 1-16, July.
    5. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    6. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.
    7. Xu, Hang & Song, Jianfeng, 2022. "Drivers of the irrigation water rebound effect: A case study of Hetao irrigation district in Yellow River basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    8. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    9. Fishman, Ram & Giné, Xavier & Jacoby, Hanan G., 2023. "Efficient irrigation and water conservation: Evidence from South India," Journal of Development Economics, Elsevier, vol. 162(C).
    10. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    11. R. Aaron Hrozencik & Jordan F. Suter & Paul J. Ferraro & Nathan Hendricks, 2024. "Social comparisons and groundwater use: Evidence from Colorado and Kansas," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(2), pages 946-966, March.
    12. Song, Jianfeng & Guo, Yanan & Wu, Pute & Sun, SHikun, 2018. "The Agricultural Water Rebound Effect in China," Ecological Economics, Elsevier, vol. 146(C), pages 497-506.
    13. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    14. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    15. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    16. Wang, Tong & Park, Seong & Jin, Hailong, 2016. "Will Farmers Save Water? A Theoretical Analysis of Groundwater Conservation Policies for Ogallala Aquifer," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229904, Southern Agricultural Economics Association.
    17. de Bonviller, Simon & Wheeler, Sarah Ann & Zuo, Alec, 2020. "The dynamics of groundwater markets: Price leadership and groundwater demand elasticity in the Murrumbidgee, Australia," Agricultural Water Management, Elsevier, vol. 239(C).
    18. Zhang, Ling & Ma, Qimin & Zhao, Yanbo & Wu, Xiaobo & Yu, Wenjun, 2019. "Determining the influence of irrigation efficiency improvement on water use and consumption by conceptually considering hydrological pathways," Agricultural Water Management, Elsevier, vol. 213(C), pages 674-681.
    19. Li, Haoyang & Zhao, Jinhua, 2016. "Rebound Effect of Irrigation Technologies? The Role of Water Rights," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235966, Agricultural and Applied Economics Association.
    20. Drysdale, Krystal M. & Hendricks, Nathan P., 2018. "Adaptation to an irrigation water restriction imposed through local governance," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 150-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1590-:d:146582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.