IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3497-d172822.html
   My bibliography  Save this article

Optimal Pricing and Service for the Peak-Period Bus Commuting Inefficiency of Boarding Queuing Congestion

Author

Listed:
  • You-Zhi Zeng

    (School of Transportation, Southeast University, Nanjing 210096, China
    College of Civil Science and Engineering, Yangzhou University, Yangzhou 225009, China)

  • Bin Ran

    (School of Transportation, Southeast University, Nanjing 210096, China
    Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Ning Zhang

    (School of Economics and Management, Beihang University, Beijing 100191, China)

  • Xiaobao Yang

    (MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China)

  • Jia-Jun Shen

    (College of Civil Science and Engineering, Yangzhou University, Yangzhou 225009, China)

  • She-Jun Deng

    (College of Civil Science and Engineering, Yangzhou University, Yangzhou 225009, China)

Abstract

This paper proposes an equilibrium bus boarding model to investigate optimal pricing and service for peak-period bus commuting inefficiency of boarding queuing congestion. Commuters are assumed to choose their optimal time-of-use decision from home or the workplace to the bus. We found that: (1) when the earliest commuter boards the bus as soon as the bus arrives at the bus station, the dynamic boarding queuing congestion toll that eliminates the boarding queuing congestion creates social optimal equilibrium and the optimal bus departure interval during the peak period; (2) the optimal bus departure interval during the peak period is the time that the preceding bus riders spend on boarding, which means the relationship between service frequency and ridership does not conform to the square root principle: the optimal bus frequency is proportional to the square root of the number of commuters.

Suggested Citation

  • You-Zhi Zeng & Bin Ran & Ning Zhang & Xiaobao Yang & Jia-Jun Shen & She-Jun Deng, 2018. "Optimal Pricing and Service for the Peak-Period Bus Commuting Inefficiency of Boarding Queuing Congestion," Sustainability, MDPI, vol. 10(10), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3497-:d:172822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ji, Yanjie & Gao, Liangpeng & Chen, Dandan & Ma, Xinwei & Zhang, Ruochen, 2018. "How does a static measure influence passengers’ boarding behaviors and bus dwell time? Simulated evidence from Nanjing bus stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 13-25.
    2. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    3. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Li, Xinwei, 2018. "Day-to-day departure time choice under bounded rationality in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 832-849.
    4. Khan, Zaid & Amin, Saurabh, 2018. "Bottleneck model with heterogeneous information," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 157-190.
    5. Kraus, Marvin, 2003. "A new look at the two-mode problem," Journal of Urban Economics, Elsevier, vol. 54(3), pages 511-530, November.
    6. Tian, Qiong & Huang, Hai-Jun & Yang, Hai, 2007. "Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 616-631, July.
    7. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    8. Alfa, Attahiru Sule & Chen, Mingyuan, 1995. "Temporal distribution of public transport demand during the peak period," European Journal of Operational Research, Elsevier, vol. 83(1), pages 137-153, May.
    9. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2017. "Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 175-197.
    10. Börjesson, Maria & Fung, Chau Man & Proost, Stef, 2017. "Optimal prices and frequencies for buses in Stockholm," Economics of Transportation, Elsevier, vol. 9(C), pages 20-36.
    11. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    12. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    13. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    14. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    15. van den Berg, Vincent & Verhoef, Erik T., 2011. "Congestion tolling in the bottleneck model with heterogeneous values of time," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 60-78, January.
    16. Sun, Lijun & Tirachini, Alejandro & Axhausen, Kay W. & Erath, Alexander & Lee, Der-Horng, 2014. "Models of bus boarding and alighting dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 447-460.
    17. Kraus, Marvin, 2012. "Road pricing with optimal mass transit," Journal of Urban Economics, Elsevier, vol. 72(2), pages 81-86.
    18. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1992. "Route choice with heterogeneous drivers and group-specific congestion costs," Regional Science and Urban Economics, Elsevier, vol. 22(1), pages 71-102, March.
    19. Knockaert, Jasper & Verhoef, Erik T. & Rouwendal, Jan, 2016. "Bottleneck congestion: Differentiating the coarse charge," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 59-73.
    20. Sumi, Tomonori & Matsumoto, Yoshiji & Miyaki, Yasuyuki, 1990. "Departure time and route choice of commuters on mass transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 24(4), pages 247-262, August.
    21. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    22. Wang, David Z.W. & Nayan, Ashish & Szeto, W.Y., 2018. "Optimal bus service design with limited stop services in a travel corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 70-86.
    23. Richard Arnott, 2001. "The Corridor Problem," Boston College Working Papers in Economics 443, Boston College Department of Economics.
    24. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    25. Ruiz, Maurici & Segui-Pons, Joana Maria & Mateu-LLadó, Jaume, 2017. "Improving Bus Service Levels and social equity through bus frequency modelling," Journal of Transport Geography, Elsevier, vol. 58(C), pages 220-233.
    26. Kraus, Marvin & Yoshida, Yuichiro, 2002. "The Commuter's Time-of-Use Decision and Optimal Pricing and Service in Urban Mass Transit," Journal of Urban Economics, Elsevier, vol. 51(1), pages 170-195, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    3. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    4. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
    5. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Li, Xinwei, 2018. "Day-to-day departure time choice under bounded rationality in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 832-849.
    6. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    7. Tian, Qiong & Liu, Peng & Ong, Ghim Ping & Huang, Hai-Jun, 2021. "Morning commuting pattern and crowding pricing in a many-to-one public transit system with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    8. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    9. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    10. Yang, Hai & Tang, Yili, 2018. "Managing rail transit peak-hour congestion with a fare-reward scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 122-136.
    11. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    12. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    13. Basso, Leonardo J. & Feres, Fernando & Silva, Hugo E., 2019. "The efficiency of bus rapid transit (BRT) systems: A dynamic congestion approach," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 47-71.
    14. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    15. Yang, Hai & Liu, Wei & Wang, Xiaolei & Zhang, Xiaoning, 2013. "On the morning commute problem with bottleneck congestion and parking space constraints," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 106-118.
    16. de Palma, André & Lindsey, Robin & Monchambert, Guillaume, 2017. "The economics of crowding in rail transit," Journal of Urban Economics, Elsevier, vol. 101(C), pages 106-122.
    17. Osawa, Minoru & Fu, Haoran & Akamatsu, Takashi, 2018. "First-best dynamic assignment of commuters with endogenous heterogeneities in a corridor network," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 811-831.
    18. Tian, Qiong & Huang, Hai-Jun & Yang, Hai, 2007. "Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system," Transportation Research Part B: Methodological, Elsevier, vol. 41(6), pages 616-631, July.
    19. Liu, Peng & Liu, Jielun & Ong, Ghim Ping & Tian, Qiong, 2020. "Flow pattern and optimal capacity in a bi-modal traffic corridor with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    20. Yoshida, Yuichiro, 2008. "Commuter arrivals and optimal service in mass transit: Does queuing behavior at transit stops matter?," Regional Science and Urban Economics, Elsevier, vol. 38(3), pages 228-251, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3497-:d:172822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.