IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v6y2017i3p53-d109146.html
   My bibliography  Save this article

The Sino-Brazilian Telecoupled Soybean System and Cascading Effects for the Exporting Country

Author

Listed:
  • Ramon Felipe Bicudo da Silva

    (Center for Environmental Studies and Research, State University of Campinas, Campinas, SP 13083-867, Brazil)

  • Mateus Batistella

    (Center for Environmental Studies and Research, State University of Campinas, Campinas, SP 13083-867, Brazil
    Brazilian Agricultural Research Corporation, Brasília, DF 70770-901, Brazil)

  • Yue Dou

    (Center for Systems Integration and Sustainability, Michigan State University, East Lansing, MI 48824, USA)

  • Emilio Moran

    (Center for Systems Integration and Sustainability, Michigan State University, East Lansing, MI 48824, USA
    Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48824, USA)

  • Sara McMillan Torres

    (Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48824, USA)

  • Jianguo Liu

    (Center for Systems Integration and Sustainability, Michigan State University, East Lansing, MI 48824, USA)

Abstract

The global food market makes international players intrinsically connected through the flow of commodities, demand, production, and consumption. Local decisions, such as new economic policies or dietary shifts, can foster changes in coupled human–natural systems across long distances. Understanding the causes and effects of these changes is essential for agricultural-export countries, such as Brazil. Since 2000, Brazil has led the expansion of soybean planted area—19 million hectares, or 47.5% of the world’s increase. Soybean is among the major crop commodities traded globally. We use the telecoupling framework to analyze (i) the international trade dynamics between Brazil and China as the cause of the increased production of Brazilian soybean since 2000; (ii) and the cascading effects of the Sino-Brazilian telecoupled soybean system for Brazilian maize production and exports, with attention to consequences on domestic prices, availability, and risks associated with climatic extreme events. Census-based data at state and county levels, policy analysis, and interviews with producers and stakeholders guided our methodological approach. We identified that the Brazilian soybean production decreased maize single crop production and accelerated maize as a second crop following soybean, a practice that makes farmers more vulnerable to precipitation anomalies (e.g., rainfall shortage). In addition, the two-crop system of soybean/maize pressures the Brazilian maize market when unexpected events such as extreme droughts strike and when this results in a failed maize harvest in the second crop, most of which is for domestic consumption rather than export. Our study suggests the need to incorporate the telecoupling framework in land use decision-making and understanding landscape changes.

Suggested Citation

  • Ramon Felipe Bicudo da Silva & Mateus Batistella & Yue Dou & Emilio Moran & Sara McMillan Torres & Jianguo Liu, 2017. "The Sino-Brazilian Telecoupled Soybean System and Cascading Effects for the Exporting Country," Land, MDPI, vol. 6(3), pages 1-19, August.
  • Handle: RePEc:gam:jlands:v:6:y:2017:i:3:p:53-:d:109146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/6/3/53/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/6/3/53/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    2. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    3. Birgit Meade, & Puricelli, Estefania & McBride, William D. & Valdes, Constanza & Hoffman, Linwood & Foreman, Linda & Dohlman, Erik, 2016. "Corn and Soybean Production Costs and Export Competitiveness in Argentina, Brazil, and the United States," Economic Information Bulletin 262143, United States Department of Agriculture, Economic Research Service.
    4. Hansen, James & Gale, Fred, 2014. "China in the Next Decade: Rising Meat Demand and Growing Imports of Feed," Amber Waves:The Economics of Food, Farming, Natural Resources, and Rural America, United States Department of Agriculture, Economic Research Service, issue 03, pages 1-1, April.
    5. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    6. Favro, Jackelline & Caldarelli, Carlos Eduardo & Camara, Marcia Regina Gabardo da, 2015. "Modelo de Análise da Oferta de Exportação de Milho Brasileira: 2001 a 2012," Brazilian Journal of Rural Economy and Sociology (Revista de Economia e Sociologia Rural-RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 53(3), pages 1-22, September.
    7. Carlos Eduardo Caldarelli & Mirian Rumenos Piedade Bacchi, 2012. "Fatores de influência no preço do milho no Brasil [Factors that influence corn prices in Brazil]," Nova Economia, Economics Department, Universidade Federal de Minas Gerais (Brazil), vol. 22(1), pages 141-164, January-A.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelly E. Kapsar & Ciara L. Hovis & Ramon Felipe Bicudo da Silva & Erin K. Buchholtz & Andrew K. Carlson & Yue Dou & Yueyue Du & Paul R. Furumo & Yingjie Li & Aurora Torres & Di Yang & Ho Yi Wan & Juli, 2019. "Telecoupling Research: The First Five Years," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    2. William J. McConnell & Andrés Viña, 2018. "Interactions between Food Security and Land Use in the Context of Global Change," Land, MDPI, vol. 7(2), pages 1-3, April.
    3. Xiaona Guo & Ruishan Chen & Qiang Li & Michael E. Meadows, 2021. "Achieving Win–Win Solutions in Telecoupled Human–Land Systems," Land, MDPI, vol. 10(3), pages 1-15, March.
    4. Dou, Yue & Silva, Ramon Felipe Bicudo da & Batistella, Mateus & Torres, Sara & Moran, Emilio & Liu, Jianguo, 2023. "Mapping crop producer perceptions: The role of global drivers on local agricultural land use in Brazil," Land Use Policy, Elsevier, vol. 133(C).
    5. Anna Herzberger & Min Gon Chung & Kelly Kapsar & Kenneth A. Frank & Jianguo Liu, 2019. "Telecoupled Food Trade Affects Pericoupled Trade and Intracoupled Production," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    6. da Silva, Ramon Felipe Bicudo & Batistella, Mateus & Palmieri, Roberto & Dou, Yue & Millington, James D.A., 2019. "Eco-certification protocols as mechanisms to foster sustainable environmental practices in telecoupled systems," Forest Policy and Economics, Elsevier, vol. 105(C), pages 52-63.
    7. Liesbeth de Schutter & Stefan Giljum & Tiina Häyhä & Martin Bruckner & Asjad Naqvi & Ines Omann & Sigrid Stagl, 2019. "Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    8. Luiz Antonio Martinelli & Mateus Batistella & Ramon Felipe Bicudo da Silva & Emilio Moran, 2017. "Soy Expansion and Socioeconomic Development in Municipalities of Brazil," Land, MDPI, vol. 6(3), pages 1-14, September.
    9. Zandra A. Cunha & Carlos R. Mello & Samuel Beskow & Marcelle M. Vargas & Jorge A. Guzman & Maíra M. Moura, 2023. "A Modeling Approach for Analyzing the Hydrological Impacts of the Agribusiness Land-Use Scenarios in an Amazon Basin," Land, MDPI, vol. 12(7), pages 1-20, July.
    10. de Area Leão Pereira, Eder Johnson & de Santana Ribeiro, Luiz Carlos & da Silva Freitas, Lúcio Flávio & de Barros Pereira, Hernane Borges, 2020. "Brazilian policy and agribusiness damage the Amazon rainforest," Land Use Policy, Elsevier, vol. 92(C).
    11. Ramon Felipe Bicudo da Silva & Mateus Batistella & James D. A. Millington & Emilio Moran & Luiz A. Martinelli & Yue Dou & Jianguo Liu, 2020. "Three Decades of Changes in Brazilian Municipalities and Their Food Production Systems," Land, MDPI, vol. 9(11), pages 1-17, October.
    12. Roux, Nicolas & Kastner, Thomas & Erb, Karl-Heinz & Haberl, Helmut, 2021. "Does agricultural trade reduce pressure on land ecosystems? Decomposing drivers of the embodied human appropriation of net primary production," Ecological Economics, Elsevier, vol. 181(C).
    13. Bruno Benzaquen Perosa & Ramon Felipe Bicudo da Silva & Mateus Batistella, 2024. "Market Access and Agricultural Diversification: An Analysis of Brazilian Municipalities," Land, MDPI, vol. 13(1), pages 1-13, January.
    14. Andrew K. Carlson & Julie G. Zaehringer & Rachael D. Garrett & Ramon Felipe Bicudo Silva & Paul R. Furumo & Andrea N Raya Rey & Aurora Torres & Min Gon Chung & Yingjie Li & Jianguo Liu, 2018. "Toward Rigorous Telecoupling Causal Attribution: A Systematic Review and Typology," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    15. Mack, Elizabeth A. & Sauls, Laura Aileen & Jokisch, Brad D. & Nolte, Kerstin & Schmook, Birgit & He, Yifan & Radel, Claudia & Allington, Ginger R.H. & Kelley, Lisa C. & Scott, Christian Kelly & Leisz,, 2023. "Remittances and land change: A systematic review," World Development, Elsevier, vol. 168(C).
    16. Jian Zhang & Tao Tian & Jinying Cui & Gordon M. Hickey & Rui Zhou & Jianguo Liu & Youcai Xiong, 2021. "Sustainability Evaluation on the Grain to Green Program in the Hexi Corridor of China: A Metacoupled System Perspective," Sustainability, MDPI, vol. 13(3), pages 1-13, February.
    17. Meng Wang & Vikas Kumar & Ximing Ruan & Mohammed Saad & Jose Arturo Garza-Reyes & Anil Kumar, 2022. "Sustainability concerns on consumers’ attitude towards short food supply chains: an empirical investigation," Operations Management Research, Springer, vol. 15(1), pages 76-92, June.
    18. Béné, Christophe & Oosterveer, Peter & Lamotte, Lea & Brouwer, Inge D. & de Haan, Stef & Prager, Steve D. & Talsma, Elise F. & Khoury, Colin K., 2019. "When food systems meet sustainability – Current narratives and implications for actions," World Development, Elsevier, vol. 113(C), pages 116-130.
    19. Yue Dou & Ramon Felipe Bicudo da Silva & Paul McCord & Julie G. Zaehringer & Hongbo Yang & Paul R. Furumo & Jian Zhang & J. Cristóbal Pizarro & Jianguo Liu, 2020. "Understanding How Smallholders Integrated into Pericoupled and Telecoupled Systems," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    20. João Pompeu & Luciana Soler & Jean Ometto, 2018. "Modelling Land Sharing and Land Sparing Relationship with Rural Population in the Cerrado," Land, MDPI, vol. 7(3), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    2. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    3. Hajjari, Masoumeh & Tabatabaei, Meisam & Aghbashlo, Mortaza & Ghanavati, Hossein, 2017. "A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 445-464.
    4. Diogo, V. & Koomen, E. & Kuhlman, T., 2015. "An economic theory-based explanatory model of agricultural land-use patterns: The Netherlands as a case study," Agricultural Systems, Elsevier, vol. 139(C), pages 1-16.
    5. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.
    6. Diogo, V. & van der Hilst, F. & van Eijck, J. & Verstegen, J.A. & Hilbert, J. & Carballo, S. & Volante, J. & Faaij, A., 2014. "Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 208-224.
    7. Vik, Jostein, 2020. "The agricultural policy trilemma: On the wicked nature of agricultural policy making," Land Use Policy, Elsevier, vol. 99(C).
    8. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    9. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    10. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    11. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2012. "Der Markt für Bioenergie 2012," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(Supplemen), pages 1-20, February.
    12. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2011. "Der Markt für Bioenergie 2012," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61.
    13. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    14. Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
    15. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    16. Bose, Arnab & Ramji, Aditya & Singh, Jarnail & Dholakia, Dhairya, 2012. "A case study for sustainable development action using financial gradients," Energy Policy, Elsevier, vol. 47(S1), pages 79-86.
    17. Xiao Lyu & Yanan Wang & Yuntai Zhao & Shandong Niu, 2022. "Spatio‐temporal pattern and mechanism of coordinated development of “population–land–industry–money” in rural areas of three provinces in Northeast China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1333-1361, September.
    18. Till Hermanns & Katharina Helming & Katharina Schmidt & Hannes Jochen König & Heiko Faust, 2015. "Stakeholder Strategies for Sustainability Impact Assessment of Land Use Scenarios: Analytical Framework and Identifying Land Use Claims," Land, MDPI, vol. 4(3), pages 1-29, September.
    19. Lisa Biber-Freudenberger & Amit Kumar Basukala & Martin Bruckner & Jan Börner, 2018. "Sustainability Performance of National Bio-Economies," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    20. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:6:y:2017:i:3:p:53-:d:109146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.