IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v3y2011i10p1742-1772d14237.html
   My bibliography  Save this article

Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population

Author

Listed:
  • Tiffany L. Fess

    (Division of Plant & Soil Sciences, P.O. Box 6108, West Virginia University, Morgantown, WV 26506, USA)

  • James B. Kotcon

    (Division of Plant & Soil Sciences, P.O. Box 6108, West Virginia University, Morgantown, WV 26506, USA)

  • Vagner A. Benedito

    (Division of Plant & Soil Sciences, P.O. Box 6108, West Virginia University, Morgantown, WV 26506, USA)

Abstract

World population is projected to reach its maximum (~10 billion people) by the year 2050. This 45% increase of the current world population (approaching seven billion people) will boost the demand for food and raw materials. However, we live in a historical moment when supply of phosphate, water, and oil are at their peaks. Modern agriculture is fundamentally based on varieties bred for high performance under high input systems (fertilizers, water, oil, pesticides), which generally do not perform well under low-input situations. We propose a shift of research goals and plant breeding objectives from high-performance agriculture at high-energy input to those with an improved rationalization between yield and energy input. Crop breeding programs that are more focused on nutrient economy and local environmental fitness will help reduce energy demands for crop production while still providing adequate amounts of high quality food as global resources decline and population is projected to increase.

Suggested Citation

  • Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
  • Handle: RePEc:gam:jsusta:v:3:y:2011:i:10:p:1742-1772:d:14237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/3/10/1742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/3/10/1742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oumaya Bouchabke & Fengqi Chang & Matthieu Simon & Roger Voisin & Georges Pelletier & Mylène Durand-Tardif, 2008. "Natural Variation in Arabidopsis thaliana as a Tool for Highlighting Differential Drought Responses," PLOS ONE, Public Library of Science, vol. 3(2), pages 1-8, February.
    2. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    3. Maggio, G. & Cacciola, G., 2009. "A variant of the Hubbert curve for world oil production forecasts," Energy Policy, Elsevier, vol. 37(11), pages 4761-4770, November.
    4. Seckler, David & Amarasinghe, Upali A. & Molden, David J. & de Silva, Radhika & Barker, Randolph, 1998. "World water demand and supply, 1990 to 2025: scenarios and issues," IWMI Research Reports 61108, International Water Management Institute.
    5. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    6. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    7. Aleklett, Kjell & Höök, Mikael & Jakobsson, Kristofer & Lardelli, Michael & Snowden, Simon & Söderbergh, Bengt, 2010. "The Peak of the Oil Age - Analyzing the world oil production Reference Scenario in World Energy Outlook 2008," Energy Policy, Elsevier, vol. 38(3), pages 1398-1414, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan-yun Han & Kai-yi Wang & Zhong-qiang Liu & Shou-hui Pan & Xiang-yu Zhao & Qi Zhang & Shu-feng Wang, 2020. "Research on Hybrid Crop Breeding Information Management System Based on Combining Ability Analysis," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    2. Sadeghi, Seyyed Mustafa & Noorhosseini, Seyyed Ali & Damalas, Christos A., 2018. "Environmental sustainability of corn (Zea mays L.) production on the basis of nitrogen fertilizer application: The case of Lahijan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 48-55.
    3. Yoshitaka Miyake & Shota Kimoto & Yuta Uchiyama & Ryo Kohsaka, 2022. "Income Change and Inter-Farmer Relations through Conservation Agriculture in Ishikawa Prefecture, Japan: Empirical Analysis of Economic and Behavioral Factors," Land, MDPI, vol. 11(2), pages 1-18, February.
    4. Obafemi O. Olubanjo & Oluwafemi D. Adaramola & Adebolu E. Alade & Chukwudi J. Azubuike, 2022. "Development of Drip Flow Technique Hydroponic in Growing Cucumber," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 11(2), pages 1-67, April.
    5. Leonardo Caproni & Lorenzo Raggi & Carlo Tissi & Sally Howlett & Renzo Torricelli & Valeria Negri, 2018. "Multi-Environment Evaluation and Genetic Characterisation of Common Bean Breeding Lines for Organic Farming Systems," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    6. Michal Kulak & Thomas Nemecek & Emmanuel Frossard & Gérard Gaillard, 2013. "How Eco-Efficient Are Low-Input Cropping Systems in Western Europe, and What Can Be Done to Improve Their Eco-Efficiency?," Sustainability, MDPI, vol. 5(9), pages 1-22, September.
    7. Ian Paul Navea & Jae-Hyuk Han & Na-Hyun Shin & O New Lee & Soon-Wook Kwon & Il-Ryong Choi & Joong Hyoun Chin, 2022. "Assessing the Effect of a Major Quantitative Locus for Phosphorus Uptake ( Pup1 ) in Rice ( O. sativa L.) Grown under a Temperate Region," Agriculture, MDPI, vol. 12(12), pages 1-16, November.
    8. Hanson, Erik D. & Cossette, Max K. & Roberts, David C., 2022. "The adoption and usage of precision agriculture technologies in North Dakota," Technology in Society, Elsevier, vol. 71(C).
    9. Serena Mariani, 2021. "Law-Driven Innovation in Cereal Varieties: The Role of Plant Variety Protection and Seed Marketing Legislation in the European Union," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    10. Hanson, Erik & Roberts, David C., 2020. "Precision Agriculture Technology Usage and Adoption Patterns," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304265, Agricultural and Applied Economics Association.
    11. Agnieszka Faligowska & Katarzyna Panasiewicz & Grażyna Szymańska & Karolina Ratajczak & Hanna Sulewska & Agnieszka Pszczółkowska & Anna Kocira, 2020. "Influence of Farming System on Weed Infestation and on Productivity of Narrow-Leaved Lupin ( Lupinus angustifolius L.)," Agriculture, MDPI, vol. 10(10), pages 1-10, October.
    12. Vasileios Greveniotis & Elisavet Bouloumpasi & Stylianos Zotis & Athanasios Korkovelos & Constantinos G. Ipsilandis, 2021. "Assessment of Interactions between Yield Components of Common Vetch Cultivars in Both Conventional and Low-Input Cultivation Systems," Agriculture, MDPI, vol. 11(4), pages 1-18, April.
    13. Leangsrun Chea & Cut Erika & Marcel Naumann & Inga Smit & Bernd Horneburg & Elke Pawelzik, 2021. "Morphological, Leaf Nutrient, and Fruit Quality Characteristics of Diverse Tomato Cultivars under Organic Low-Input Management," Sustainability, MDPI, vol. 13(21), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    2. Vik, Jostein, 2020. "The agricultural policy trilemma: On the wicked nature of agricultural policy making," Land Use Policy, Elsevier, vol. 99(C).
    3. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    4. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    5. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    6. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    7. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2012. "Der Markt für Bioenergie 2012," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(Supplemen), pages 1-20, February.
    8. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2011. "Der Markt für Bioenergie 2012," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61.
    9. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    10. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    11. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    12. Bose, Arnab & Ramji, Aditya & Singh, Jarnail & Dholakia, Dhairya, 2012. "A case study for sustainable development action using financial gradients," Energy Policy, Elsevier, vol. 47(S1), pages 79-86.
    13. Warrilow, David, 2015. "A bumpy road to the top: Statistically defining a peak in oil production," Energy Policy, Elsevier, vol. 82(C), pages 81-84.
    14. Xiao Lyu & Yanan Wang & Yuntai Zhao & Shandong Niu, 2022. "Spatio‐temporal pattern and mechanism of coordinated development of “population–land–industry–money” in rural areas of three provinces in Northeast China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1333-1361, September.
    15. Till Hermanns & Katharina Helming & Katharina Schmidt & Hannes Jochen König & Heiko Faust, 2015. "Stakeholder Strategies for Sustainability Impact Assessment of Land Use Scenarios: Analytical Framework and Identifying Land Use Claims," Land, MDPI, vol. 4(3), pages 1-29, September.
    16. Lisa Biber-Freudenberger & Amit Kumar Basukala & Martin Bruckner & Jan Börner, 2018. "Sustainability Performance of National Bio-Economies," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    17. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    18. Ruci Wang & Ahmed Derdouri & Yuji Murayama, 2018. "Spatiotemporal Simulation of Future Land Use/Cover Change Scenarios in the Tokyo Metropolitan Area," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    19. Carlo Carraro & Marinella Davide & Valeria Barbi & Giacomo Marangoni, 2013. "Science adva ncements, policy immobility: the two fac es of climate (in)action," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(3), pages 5-29.
    20. Qi-Qi CHEN & Jun-Biao ZHANG & Yu HUO, 2016. "A study on research hot-spots and frontiers of agricultural science and technology innovation - visualization analysis based on the Citespace III," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(9), pages 429-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:3:y:2011:i:10:p:1742-1772:d:14237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.