IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6237-d1226933.html
   My bibliography  Save this article

Resilience of Natural Gas Pipeline System: A Review and Outlook

Author

Listed:
  • Zhaoming Yang

    (National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China)

  • Qi Xiang

    (National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China)

  • Yuxuan He

    (National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China)

  • Shiliang Peng

    (National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China)

  • Michael Havbro Faber

    (Department of the Built Environment, Aalborg University, 9220 Aalborg, Denmark)

  • Enrico Zio

    (MINES ParisTech, PSL Research University, CRC, Sophia Antipolis, 06904 Sophia Antipolis, France
    Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy)

  • Lili Zuo

    (National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China)

  • Huai Su

    (National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China)

  • Jinjun Zhang

    (National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Beijing 102249, China)

Abstract

A natural gas pipeline system (NGPS), as a crucial energy transportation network, exhibits intricate systemic characteristics. Both uncertain disturbances and complex characteristics result in higher requirement of supply safety. The investigation into NGPS resilience addresses the constraints of pipeline integrity and reliability, centering around the vulnerability, robustness, and recovery of an NGPS. Based on a literature review and practical engineering insights, the generalized concept of NGPS resilience is elucidated. The research methodologies of NGPS resilience are classified into three types: indicator construction method, process analysis method, and complex networks method. The practical applications of NGPS resilience research are analyzed, which are based on NGPS operation safety, information safety, and market safety. The ongoing applications and detailed measures are also concluded, which can guide the researchers and engineers from NGPS resilience.

Suggested Citation

  • Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6237-:d:1226933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6237/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6237/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Weiwei & Su, Meirong & Fath, Brian D. & Zhang, Mingqi & Hao, Yan, 2016. "A systematic method of evaluation of the Chinese natural gas supply security," Applied Energy, Elsevier, vol. 165(C), pages 858-867.
    2. Lise, Wietze & Hobbs, Benjamin F. & van Oostvoorn, Frits, 2008. "Natural gas corridors between the EU and its main suppliers: Simulation results with the dynamic GASTALE model," Energy Policy, Elsevier, vol. 36(6), pages 1890-1906, June.
    3. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    4. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    5. Ruiying Li & Qiang Dong & Chong Jin & Rui Kang, 2017. "A New Resilience Measure for Supply Chain Networks," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    6. Sesini, Marzia & Giarola, Sara & Hawkes, Adam D., 2020. "The impact of liquefied natural gas and storage on the EU natural gas infrastructure resilience," Energy, Elsevier, vol. 209(C).
    7. Venizelou, Venizelos & Philippou, Nikolas & Hadjipanayi, Maria & Makrides, George & Efthymiou, Venizelos & Georghiou, George E., 2018. "Development of a novel time-of-use tariff algorithm for residential prosumer price-based demand side management," Energy, Elsevier, vol. 142(C), pages 633-646.
    8. Armando Nardo & Michele Natale & Giovanni Santonastaso & Salvatore Venticinque, 2013. "An Automated Tool for Smart Water Network Partitioning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4493-4508, October.
    9. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo, 2004. "A topological analysis of the Italian electric power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 92-97.
    10. Mohammad Najarian & Gino J. Lim, 2019. "Design and Assessment Methodology for System Resilience Metrics," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1885-1898, September.
    11. Zhang, Y. & Weng, W.G., 2020. "Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    13. Dieckhöner, Caroline & Lochner, Stefan & Lindenberger, Dietmar, 2013. "European natural gas infrastructure: The impact of market developments on gas flows and physical market integration," Applied Energy, Elsevier, vol. 102(C), pages 994-1003.
    14. Aguilera, Roberto F. & Inchauspe, Julian & Ripple, Ronald D., 2014. "The Asia Pacific natural gas market: Large enough for all?," Energy Policy, Elsevier, vol. 65(C), pages 1-6.
    15. Ghaffarpour, Reza & Mozafari, Babak & Ranjbar, Ali Mohammad & Torabi, Taghi, 2018. "Resilience oriented water and energy hub scheduling considering maintenance constraint," Energy, Elsevier, vol. 158(C), pages 1092-1104.
    16. Holz, Franziska & von Hirschhausen, Christian & Kemfert, Claudia, 2008. "A strategic model of European gas supply (GASMOD)," Energy Economics, Elsevier, vol. 30(3), pages 766-788, May.
    17. Tsai-Yun Liao & Ta-Yin Hu & Yi-No Ko, 2018. "A resilience optimization model for transportation networks under disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 469-489, August.
    18. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Hyun Cho, Jae & Lim, Wonsub & Moon, Il, 2011. "Current status and future projections of LNG demand and supplies: A global prospective," Energy Policy, Elsevier, vol. 39(7), pages 4097-4104, July.
    19. Flouri, Maria & Karakosta, Charikleia & Kladouchou, Charikleia & Psarras, John, 2015. "How does a natural gas supply interruption affect the EU gas security? A Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 785-796.
    20. Monforti, F. & Szikszai, A., 2010. "A MonteCarlo approach for assessing the adequacy of the European gas transmission system under supply crisis conditions," Energy Policy, Elsevier, vol. 38(5), pages 2486-2498, May.
    21. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    22. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    23. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Zhou, Jing & Zhang, Li & Fan, Lin & Yang, Zhaoming & Xie, Fei & Zuo, Lili & Zhang, Jinjun, 2023. "A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model," Energy, Elsevier, vol. 263(PB).
    24. Ashli Akins & Phil O’B. Lyver & Hugo F. Alrøe & Henrik Moller, 2019. "The Universal Precautionary Principle: New Pillars and Pathways for Environmental, Sociocultural, and Economic Resilience," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    25. Yu, Weichao & Song, Shangfei & Li, Yichen & Min, Yuan & Huang, Weihe & Wen, Kai & Gong, Jing, 2018. "Gas supply reliability assessment of natural gas transmission pipeline systems," Energy, Elsevier, vol. 162(C), pages 853-870.
    26. Labaka, Leire & Hernantes, Josune & Sarriegi, Jose M., 2015. "Resilience framework for critical infrastructures: An empirical study in a nuclear plant," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 92-105.
    27. Tsvetanov, Tsvetan & Slaria, Srishti, 2021. "The effect of the Colonial Pipeline shutdown on gasoline prices," Economics Letters, Elsevier, vol. 209(C).
    28. Zhang, Xiaoge & Mahadevan, Sankaran & Sankararaman, Shankar & Goebel, Kai, 2018. "Resilience-based network design under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 364-379.
    29. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Yang, Zhaoming & Zhang, Jinjun, 2021. "Data-driven reliability assessment method of Integrated Energy Systems based on probabilistic deep learning and Gaussian mixture Model-Hidden Markov Model," Renewable Energy, Elsevier, vol. 174(C), pages 952-970.
    30. Szikszai, A. & Monforti, F., 2011. "GEMFLOW: A time dependent model to assess responses to natural gas supply crises," Energy Policy, Elsevier, vol. 39(9), pages 5129-5136, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Weichao & Gong, Jing & Song, Shangfei & Huang, Weihe & Li, Yichen & Zhang, Jie & Hong, Bingyuan & Zhang, Ye & Wen, Kai & Duan, Xu, 2019. "Gas supply reliability analysis of a natural gas pipeline system considering the effects of underground gas storages," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    3. Chen, Qian & Zuo, Lili & Wu, Changchun & Cao, Yankai & Bu, Yaran & Chen, Feng & Sadiq, Rehan, 2021. "Supply reliability assessment of a gas pipeline network under stochastic demands," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Chen, Qian & Zuo, Lili & Wu, Changchun & Bu, Yaran & Lu, Yifei & Huang, Yanfei & Chen, Feng, 2020. "Short-term supply reliability assessment of a gas pipeline system under demand variations," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    6. Yu, Weichao & Song, Shangfei & Li, Yichen & Min, Yuan & Huang, Weihe & Wen, Kai & Gong, Jing, 2018. "Gas supply reliability assessment of natural gas transmission pipeline systems," Energy, Elsevier, vol. 162(C), pages 853-870.
    7. Yu, Weichao & Huang, Weihe & Wen, Yunhao & Li, Yichen & Liu, Hongfei & Wen, Kai & Gong, Jing & Lu, Yanan, 2021. "An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    9. Senderov, Sergey M. & Smirnova, Elena M. & Vorobev, Sergey V., 2020. "Analysis of vulnerability of fuel supply systems in gas-consuming regions due to failure of critical gas industry facilities," Energy, Elsevier, vol. 212(C).
    10. Sesini, Marzia & Giarola, Sara & Hawkes, Adam D., 2020. "The impact of liquefied natural gas and storage on the EU natural gas infrastructure resilience," Energy, Elsevier, vol. 209(C).
    11. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    12. Corrado lo Storto, 2019. "An SNA-DEA Prioritization Framework to Identify Critical Nodes of Gas Networks: The Case of the US Interstate Gas Infrastructure," Energies, MDPI, vol. 12(23), pages 1-18, December.
    13. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Mingjing Guo & Yan Bu & Jinhua Cheng & Ziyu Jiang, 2018. "Natural Gas Security in China: A Simulation of Evolutionary Trajectory and Obstacle Degree Analysis," Sustainability, MDPI, vol. 11(1), pages 1-18, December.
    15. Senderov, Sergey M. & Vorobev, Sergey V. & Smirnova, Elena M., 2022. "Peak underground gas storage efficiency in reducing the vulnerability of gas supply to consumers in an extensive gas transmission system," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    16. Rodríguez-Gómez, Nuria & Zaccarelli, Nicola & Bolado-Lavín, Ricardo, 2016. "European ability to cope with a gas crisis. Comparison between 2009 and 2014," Energy Policy, Elsevier, vol. 97(C), pages 461-474.
    17. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Peter Lustenberger & Felix Schumacher & Matteo Spada & Peter Burgherr & Bozidar Stojadinovic, 2019. "Assessing the Performance of the European Natural Gas Network for Selected Supply Disruption Scenarios Using Open-Source Information," Energies, MDPI, vol. 12(24), pages 1-28, December.
    19. Gong, Chengzhu & Gong, Nianjiao & Qi, Rui & Yu, Shiwei, 2020. "Assessment of natural gas supply security in Asia Pacific: Composite indicators with compromise Benefit-of-the-Doubt weights," Resources Policy, Elsevier, vol. 67(C).
    20. Cabrales, Sergio & Valencia, Carlos & Ramírez, Carlos & Ramírez, Andrés & Herrera, Juan & Cadena, Angela, 2022. "Stochastic cost-benefit analysis to assess new infrastructure to improve the reliability of the natural gas supply," Energy, Elsevier, vol. 246(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6237-:d:1226933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.