IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1258-d745206.html
   My bibliography  Save this article

Assessment on the Cost Synergies and Impacts among Measures on Energy Conservation, Decarbonization, and Air Pollutant Reductions Using an MCEE Model: A Case of Guangzhou, China

Author

Listed:
  • Yunsheng Xie

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China)

  • Peng Wang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Yi Dou

    (Platinum Society, The University of Tokyo, Tokyo 1138656, Japan)

  • Lei Yang

    (Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China)

  • Songyan Ren

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Daiqing Zhao

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract

Many challenges are faced in the process of urban sustainable development, including the continuous growth in energy demand and rapid increase in CO 2 and air pollutant emissions. This study focuses on the costs of measures to address these issues and establishes a multi-objective comprehensive assessment model for energy saving, CO 2 , and pollutant emission (MCEE). Taking Guangzhou as an example, the sustainable development measures are divided into three categories, energy-saving, demand-optimization, and environmental-protection. Five scenarios are set to quantitatively evaluate the costs when these measures are implemented alone or coordinately for the period 2015–2035. Conclusions are as follows: (1) Measures of energy-saving and demand-optimization have the best synergistic effect on energy saving and emission reduction. The synergistic benefits include an 80% and 84% increase in energy savings and CO 2 reductions, respectively, and more than 50% increase in pollutant reductions. (2) Measures of demand-optimization and energy-saving have the best synergistic effect on cost saving, which reduces the unit technical improvement costs of energy saving and CO 2 reduction by 49.5% and 54.9%, respectively, and the unit end-of-pipe costs of four pollutants by 59.15%, 54.43%, 61.15%, and 51.96, respectively. (3) Environmental-protection measures have remarkable synergistic effects in reducing the cost of health loss and labor loss. At the price of a 5% increase in technical improvement cost and 9% in end-of-pipe treatment cost, health loss, labor loss, and total social cost will be reduced by 18%, 19%, and 3%, respectively. The above conclusions provide support for cities of the same type to coordinate various measures, reduce resistance and barriers to their implementation, compensate for the market deficiency of high costs of some measures, and achieve the goal of sustainable development.

Suggested Citation

  • Yunsheng Xie & Peng Wang & Yi Dou & Lei Yang & Songyan Ren & Daiqing Zhao, 2022. "Assessment on the Cost Synergies and Impacts among Measures on Energy Conservation, Decarbonization, and Air Pollutant Reductions Using an MCEE Model: A Case of Guangzhou, China," Energies, MDPI, vol. 15(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1258-:d:745206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hájek, Miroslav & Zimmermannová, Jarmila & Helman, Karel & Rozenský, Ladislav, 2019. "Analysis of carbon tax efficiency in energy industries of selected EU countries," Energy Policy, Elsevier, vol. 134(C).
    2. Klausbruckner, Carmen & Annegarn, Harold & Henneman, Lucas R.F. & Rafaj, Peter, 2016. "A policy review of synergies and trade-offs in South African climate change mitigation and air pollution control strategies," Environmental Science & Policy, Elsevier, vol. 57(C), pages 70-78.
    3. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
    4. Kevin Robert Gurney & Paty Romero-Lankao & Karen C. Seto & Lucy R. Hutyra & Riley Duren & Christopher Kennedy & Nancy B. Grimm & James R. Ehleringer & Peter Marcotullio & Sara Hughes & Stephanie Pince, 2015. "Climate change: Track urban emissions on a human scale," Nature, Nature, vol. 525(7568), pages 179-181, September.
    5. Bisaga, Iwona & Parikh, Priti & Tomei, Julia & To, Long Seng, 2021. "Mapping synergies and trade-offs between energy and the sustainable development goals: A case study of off-grid solar energy in Rwanda," Energy Policy, Elsevier, vol. 149(C).
    6. Riley M. Duren & Charles E. Miller, 2012. "Measuring the carbon emissions of megacities," Nature Climate Change, Nature, vol. 2(8), pages 560-562, August.
    7. Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
    8. Thambiran, Tirusha & Diab, Roseanne D., 2011. "Air quality and climate change co-benefits for the industrial sector in Durban, South Africa," Energy Policy, Elsevier, vol. 39(10), pages 6658-6666, October.
    9. van Vliet, Oscar & Krey, Volker & McCollum, David & Pachauri, Shonali & Nagai, Yu & Rao, Shilpa & Riahi, Keywan, 2012. "Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution," Energy Economics, Elsevier, vol. 34(S3), pages 470-480.
    10. Umed Temurshoev & Ronald E. Miller & Maaike C. Bouwmeester, 2013. "A Note On The Gras Method," Economic Systems Research, Taylor & Francis Journals, vol. 25(3), pages 361-367, September.
    11. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    12. Chan, Nathan W. & Morrow, John W., 2019. "Unintended consequences of cap-and-trade? Evidence from the Regional Greenhouse Gas Initiative," Energy Economics, Elsevier, vol. 80(C), pages 411-422.
    13. Doherty, Meghan & Klima, Kelly & Hellmann, Jessica J., 2016. "Climate change in the urban environment: Advancing, measuring and achieving resiliency," Environmental Science & Policy, Elsevier, vol. 66(C), pages 310-313.
    14. Kainuma, Mikiko & Matsuoka, Yuzuru & Morita, Tsuneyuki, 2000. "The AIM/end-use model and its application to forecast Japanese carbon dioxide emissions," European Journal of Operational Research, Elsevier, vol. 122(2), pages 416-425, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Zhijie & Lin, Boqiang, 2020. "Rethinking the choice of carbon tax and carbon trading in China," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    2. Reuter, Matthias & Patel, Martin K. & Eichhammer, Wolfgang & Lapillonne, Bruno & Pollier, Karine, 2020. "A comprehensive indicator set for measuring multiple benefits of energy efficiency," Energy Policy, Elsevier, vol. 139(C).
    3. Hanxiong Zhu & Kexi Pan & Yong Liu & Zheng Chang & Ping Jiang & Yongfu Li, 2019. "Analyzing Temporal and Spatial Characteristics and Determinant Factors of Energy-Related CO 2 Emissions of Shanghai in China Using High-Resolution Gridded Data," Sustainability, MDPI, vol. 11(17), pages 1-21, August.
    4. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit & Masui, Toshihiko & Hanaoka, Tatsuya & Matsuoka, Yuzuru, 2015. "A quantitative analysis of Low Carbon Society (LCS) measures in Thai industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 178-195.
    5. Carrilho-Nunes, Inês & Catalão-Lopes, Margarida, 2022. "The effects of environmental policy and technology transfer on GHG emissions: The case of Portugal," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 255-264.
    6. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    7. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    8. Marius Dalian Doran & Maria Magdalena Poenaru & Alexandra Lucia Zaharia & Sorana Vătavu & Oana Ramona Lobonț, 2022. "Fiscal Policy, Growth, Financial Development and Renewable Energy in Romania: An Autoregressive Distributed Lag Model with Evidence for Growth Hypothesis," Energies, MDPI, vol. 16(1), pages 1-18, December.
    9. Meelan Thondoo & David Rojas-Rueda & Joyeeta Gupta & Daniel H. de Vries & Mark J. Nieuwenhuijsen, 2019. "Systematic Literature Review of Health Impact Assessments in Low and Middle-Income Countries," IJERPH, MDPI, vol. 16(11), pages 1-21, June.
    10. Hisham Abdul Kareem Shaheen & Lama Ismail Mohammad Ahmad & Amer Saadi Kallel Shakkour & Reem Khaled Matahen & Salwa Abdul Fattah Talab Al Azzeh, 2020. "Human Resources Management Effectiveness and the Role of Quality Management: Empirical Study in Jordanian Pharmaceutical Companies," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 44-59.
    11. Kejun Jiang & Sha Chen & Chenmin He & Jia Liu & Sun Kuo & Li Hong & Songli Zhu & Xiang Pianpian, 2019. "Energy transition, CO2 mitigation, and air pollutant emission reduction: scenario analysis from IPAC model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1277-1293, December.
    12. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    13. Huang, Beijia & Mauerhofer, Volker, 2016. "Low carbon technology assessment and planning—Case analysis of building sector in Chongming, Shanghai," Renewable Energy, Elsevier, vol. 86(C), pages 324-331.
    14. Margaretha Breil & Cristina Cattaneo & Katie Johnson, 2015. "Qualitative Scenario Building for Post-carbon Cities," Working Papers 2015.102, Fondazione Eni Enrico Mattei.
    15. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    16. Comincioli, Nicola & Vergalli, Sergio, 2020. "Effects of Carbon Tax on Electricity Price Volatility: Empirical Evidences from the Australian Market," 2030 Agenda 305205, Fondazione Eni Enrico Mattei (FEEM).
    17. Ali, Ghaffar & Abbas, Sawaid & Mueen Qamer, Faisal, 2013. "How effectively low carbon society development models contribute to climate change mitigation and adaptation action plans in Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 632-638.
    18. Ahmann, Lara & Banning, Maximilian & Lutz, Christian, 2022. "Modeling rebound effects and counteracting policies for German industries," Ecological Economics, Elsevier, vol. 197(C).
    19. Huang, Zhi-xiong & Yang, Xiandong, 2021. "Carbon emissions and firm innovation," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 503-513.
    20. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1258-:d:745206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.