IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v197y2022ics0921800922000945.html
   My bibliography  Save this article

Modeling rebound effects and counteracting policies for German industries

Author

Listed:
  • Ahmann, Lara
  • Banning, Maximilian
  • Lutz, Christian

Abstract

Energy efficiency programs for industry are important to reduce energy demand and GHG emissions. Rebound effects reduce intended energy savings. Against this background, various policy measures are modeled and combined for German industry to see how they can counter rebound effects. The efficiency program itself, the reinvestment requirement and carbon prices reduce energy use in industry. Higher carbon prices or energy taxes also reduce energy consumption and emissions in other sectors that are more price sensitive. Reimbursement of carbon pricing revenues via lower electricity prices can incentivize the shift towards electricity, but also towards more energy consumption. A combined set of policy measures for German industry can reduce energy use in industry by 5.2% against a baseline in 2030. The combined policy set will further reduce CO2 emissions, having only small effects on other sustainability indicators such as GDP and employment. In the future, rebound effects need to be considered in policy design. As the combined set will clearly miss the new national emission target for 2030, additional measures are needed together with a fundamental transformation of the energy system. To reach the targets of the Paris agreement, besides energy efficiency also clean energy supply, sufficiency and behavioral change are necessary.

Suggested Citation

  • Ahmann, Lara & Banning, Maximilian & Lutz, Christian, 2022. "Modeling rebound effects and counteracting policies for German industries," Ecological Economics, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:ecolec:v:197:y:2022:i:c:s0921800922000945
    DOI: 10.1016/j.ecolecon.2022.107432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800922000945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2022.107432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Font Vivanco, David & Kemp, René & van der Voet, Ester, 2016. "How to deal with the rebound effect? A policy-oriented approach," Energy Policy, Elsevier, vol. 94(C), pages 114-125.
    2. Birol, Fatih & Keppler, Jan Horst, 2000. "Prices, technology development and the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 457-469, June.
    3. Hájek, Miroslav & Zimmermannová, Jarmila & Helman, Karel & Rozenský, Ladislav, 2019. "Analysis of carbon tax efficiency in energy industries of selected EU countries," Energy Policy, Elsevier, vol. 134(C).
    4. Christian Lutz & Lisa Becker & Andreas Kemmler, 2021. "Socioeconomic Effects of Ambitious Climate Mitigation Policies in Germany," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    5. Freire-González, Jaume & Puig-Ventosa, Ignasi, 2019. "Reformulating taxes for an energy transition," Energy Economics, Elsevier, vol. 78(C), pages 312-323.
    6. Anna Dahlqvist, Tommy Lundgren, and Per-Olov Marklund, 2021. "The Rebound Effect in Energy-Intensive Industries: A Factor Demand Model with Asymmetric Price Response," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 177-204.
    7. Xu, Mengmeng & Lin, Boqiang & Wang, Siquan, 2021. "Towards energy conservation by improving energy efficiency? Evidence from China’s metallurgical industry," Energy, Elsevier, vol. 216(C).
    8. Saunders, Harry D., 2000. "A view from the macro side: rebound, backfire, and Khazzoom-Brookes," Energy Policy, Elsevier, vol. 28(6-7), pages 439-449, June.
    9. Heun, Matthew Kuperus & Brockway, Paul E., 2019. "Meeting 2030 primary energy and economic growth goals: Mission impossible?," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    11. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    12. Paroussos, Leonidas & Fragkos, Panagiotis & Capros, Pantelis & Fragkiadakis, Kostas, 2015. "Assessment of carbon leakage through the industry channel: The EU perspective," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 204-219.
    13. Stern, David I., 2020. "How large is the economy-wide rebound effect?," Energy Policy, Elsevier, vol. 147(C).
    14. Franziska Klein & Jeroen van den Bergh, 2021. "The employment double dividend of environmental tax reforms: exploring the role of agent behaviour and social interaction," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 10(2), pages 189-213, April.
    15. Galvin, Ray & Dütschke, Elisabeth & Weiß, Julika, 2021. "A conceptual framework for understanding rebound effects with renewable electricity: A new challenge for decarbonizing the electricity sector," Renewable Energy, Elsevier, vol. 176(C), pages 423-432.
    16. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
    17. Keen, Steve & Ayres, Robert U. & Standish, Russell, 2019. "A Note on the Role of Energy in Production," Ecological Economics, Elsevier, vol. 157(C), pages 40-46.
    18. Sonnberger, Marco & Gross, Matthias, 2018. "Rebound Effects in Practice: An Invitation to Consider Rebound From a Practice Theory Perspective," Ecological Economics, Elsevier, vol. 154(C), pages 14-21.
    19. Lorenz T. Keyßer & Manfred Lenzen, 2021. "1.5 °C degrowth scenarios suggest the need for new mitigation pathways," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    20. Jarke-Neuert, Johannes & Perino, Grischa, 2020. "Energy efficiency promotion backfires under cap-and-trade," Resource and Energy Economics, Elsevier, vol. 62(C).
    21. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    22. Koesler, Simon & Swales, Kim & Turner, Karen, 2016. "International spillover and rebound effects from increased energy efficiency in Germany," Energy Economics, Elsevier, vol. 54(C), pages 444-452.
    23. Allan, Grant & Hanley, Nick & McGregor, Peter & Swales, Kim & Turner, Karen, 2007. "The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom," Energy Economics, Elsevier, vol. 29(4), pages 779-798, July.
    24. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    25. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    26. J. Daniel Khazzoom, 1989. "Energy Savings from More Efficient Appliances: A Rejoinder," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 157-166.
    27. Saunders, Harry D., 2013. "Historical evidence for energy efficiency rebound in 30 US sectors and a toolkit for rebound analysts," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1317-1330.
    28. Jaume Freire-Gonz lez & Ignasi Puig-Ventosa, 2015. "Energy Efficiency Policies and the Jevons Paradox," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 69-79.
    29. Skelton, Alexandra C.H. & Paroussos, Leonidas & Allwood, Julian M., 2020. "Comparing energy and material efficiency rebound effects: an exploration of scenarios in the GEM-E3 macroeconomic model," Ecological Economics, Elsevier, vol. 173(C).
    30. repec:dau:papers:123456789/10972 is not listed on IDEAS
    31. Rocha, Felipe Freitas da & Almeida, Edmar Luiz Fagundes de, 2021. "A general equilibrium model of macroeconomic rebound effect: A broader view," Energy Economics, Elsevier, vol. 98(C).
    32. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    33. Font Vivanco, David & McDowall, Will & Freire-González, Jaume & Kemp, René & van der Voet, Ester, 2016. "The foundations of the environmental rebound effect and its contribution towards a general framework," Ecological Economics, Elsevier, vol. 125(C), pages 60-69.
    34. Lehr, Ulrike & Lutz, Christian & Edler, Dietmar, 2012. "Green jobs? Economic impacts of renewable energy in Germany," Energy Policy, Elsevier, vol. 47(C), pages 358-364.
    35. Wei, Taoyuan & Liu, Yang, 2017. "Estimation of global rebound effect caused by energy efficiency improvement," Energy Economics, Elsevier, vol. 66(C), pages 27-34.
    36. Böhringer, Christoph & Keller, Andreas & van der Werf, Edwin, 2013. "Are green hopes too rosy? Employment and welfare impacts of renewable energy promotion," Energy Economics, Elsevier, vol. 36(C), pages 277-285.
    37. Holm, Stig-Olof & Englund, Göran, 2009. "Increased ecoefficiency and gross rebound effect: Evidence from USA and six European countries 1960-2002," Ecological Economics, Elsevier, vol. 68(3), pages 879-887, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, Felipe Freitas da & Almeida, Edmar Luiz Fagundes de, 2021. "A general equilibrium model of macroeconomic rebound effect: A broader view," Energy Economics, Elsevier, vol. 98(C).
    2. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    3. Cansino, José M. & Ordóñez, Manuel & Prieto, Manuela, 2022. "Decomposition and measurement of the rebound effect: The case of energy efficiency improvements in Spain," Applied Energy, Elsevier, vol. 306(PA).
    4. Lu, Yingying & Liu, Yu & Zhou, Meifang, 2017. "Rebound effect of improved energy efficiency for different energy types: A general equilibrium analysis for China," Energy Economics, Elsevier, vol. 62(C), pages 248-256.
    5. Wu, Kuei-Yen & Wu, Jung-Hua & Huang, Yun-Hsun & Fu, Szu-Chi & Chen, Chia-Yon, 2016. "Estimating direct and indirect rebound effects by supply-driven input-output model: A case study of Taiwan's industry," Energy, Elsevier, vol. 115(P1), pages 904-913.
    6. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    7. Zhou, Meifang & Liu, Yu & Feng, Shenghao & Liu, Yang & Lu, Yingying, 2018. "Decomposition of rebound effect: An energy-specific, general equilibrium analysis in the context of China," Applied Energy, Elsevier, vol. 221(C), pages 280-298.
    8. David Font Vivanco & Serenella Sala & Will McDowall, 2018. "Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    9. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    10. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    11. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    12. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    14. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Galvin, Ray & Dütschke, Elisabeth & Weiß, Julika, 2021. "A conceptual framework for understanding rebound effects with renewable electricity: A new challenge for decarbonizing the electricity sector," Renewable Energy, Elsevier, vol. 176(C), pages 423-432.
    16. Freire-González, Jaume, 2017. "A new way to estimate the direct and indirect rebound effect and other rebound indicators," Energy, Elsevier, vol. 128(C), pages 394-402.
    17. Blum, Bianca & Hübner, Julian & Müller, Sarah & Neumärker, Karl Justus Bernhard, 2018. "Challenges for sustainable environmental policy: Influencing factors of the rebound effect in energy efficiency improvements," The Constitutional Economics Network Working Papers 02-2018, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    18. Freire-González, Jaume & Ho, Mun S., 2022. "Policy strategies to tackle rebound effects: A comparative analysis," Ecological Economics, Elsevier, vol. 193(C).
    19. Zimmermann, Michel & Vöhringer, Frank & Thalmann, Philippe & Moreau, Vincent, 2021. "Do rebound effects matter for Switzerland? Assessing the effectiveness of industrial energy efficiency improvements," Energy Economics, Elsevier, vol. 104(C).
    20. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:197:y:2022:i:c:s0921800922000945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.