IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v163y2022ics0301421522000763.html
   My bibliography  Save this article

Application of energy efficiency obligation scheme for electricity distribution companies in Turkey

Author

Listed:
  • Ünal, Berat Berkan
  • Onaygil, Sermin
  • Acuner, Ebru
  • Cin, Rabia

Abstract

To realize the existing energy-saving potential in a short time according to 2012/27/EU Energy Efficiency Directive, in 2017, Turkey published National Energy Efficiency Action Plan (NEEAP), containing Energy Efficiency Obligation Schemes EEOS establishment action. Since research studies are needed to guide the NEEAP, this study was conducted to establish an exemplary model for Turkish EEOS. Based on the literature, the main hypothesis of the study is “EEOS could contribute significantly to NEEAP targets”. Electricity Distribution Companies (EDCs) are assumed as obligated parties, a guideline containing standard energy efficiency (EE) actions for residential, commercial, and industrial sectors was prepared. Concerning EDCs' market shares, mixed-integer linear programming models, minimizing EE actions' costs, were developed to examine four annual saving targets (0.8%, 1.5%, 2%, and least) under three scenarios (yearly-based obligation, yearly-based with using 5% of each action and no constraints). Saving target 2% for 7 years with no constraint gives the highest energy-saving (above 200 TWh) and the least is from the least annual target for 10 years with yearly based obligation (below 100 TWh). In conclusion, if EDCs fulfill their obligations under specified targets and scenarios, Turkish NEEAP's saving target can be fulfilled between 10% and 44%, supporting the hypothesis of the study.

Suggested Citation

  • Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:enepol:v:163:y:2022:i:c:s0301421522000763
    DOI: 10.1016/j.enpol.2022.112851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522000763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.112851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasanbeigi, Ali & Price, Lynn, 2012. "A review of energy use and energy efficiency technologies for the textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3648-3665.
    2. Matthew E. Kahn & Nils Kok & John M. Quigley, 2013. "Commercial Building Electricity Consumption Dynamics: The Role of Structure Quality, Human Capital, and Contract Incentives," NBER Working Papers 18781, National Bureau of Economic Research, Inc.
    3. Hasanbeigi, Ali & Morrow, William & Masanet, Eric & Sathaye, Jayant & Xu, Tengfang, 2013. "Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China," Energy Policy, Elsevier, vol. 57(C), pages 287-297.
    4. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    5. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    6. Argun, Irem Duzdar & Kayakutlu, Gulgun & Ozgozen, Neslihan Yilmaz & Daim, Tugrul U., 2021. "Models for Energy Efficiency Obligation Systems through different perspectives," Technology in Society, Elsevier, vol. 64(C).
    7. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
    8. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    9. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
    10. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2018. "Modeling the multiple benefits of electricity savings for emissions reduction on power grid level: A case study of China’s chemical industry," Applied Energy, Elsevier, vol. 230(C), pages 1603-1632.
    11. Cristino, T.M. & Lotufo, F.A. & Delinchant, B. & Wurtz, F. & Faria Neto, A., 2021. "A comprehensive review of obstacles and drivers to building energy-saving technologies and their association with research themes, types of buildings, and geographic regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Yilmaz, S. & Rinaldi, A. & Patel, M.K., 2020. "DSM interactions: What is the impact of appliance energy efficiency measures on the demand response (peak load management)?," Energy Policy, Elsevier, vol. 139(C).
    13. Asan, Goksel & Tasaltin, Kamil, 2017. "Market efficiency assessment under dual pricing rule for the Turkish wholesale electricity market," Energy Policy, Elsevier, vol. 107(C), pages 109-118.
    14. Wang, Yihan & Wen, Zongguo & Yao, Jianguo & Doh Dinga, Christian, 2020. "Multi-objective optimization of synergic energy conservation and CO2 emission reduction in China's iron and steel industry under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Andrew J Mason, 2012. "OpenSolver - An Open Source Add-in to Solve Linear and Integer Progammes in Excel," Operations Research Proceedings, in: Diethard Klatte & Hans-Jakob Lüthi & Karl Schmedders (ed.), Operations Research Proceedings 2011, edition 127, pages 401-406, Springer.
    16. Malinauskaite, J. & Jouhara, H. & Ahmad, L. & Milani, M. & Montorsi, L. & Venturelli, M., 2019. "Energy efficiency in industry: EU and national policies in Italy and the UK," Energy, Elsevier, vol. 172(C), pages 255-269.
    17. Bertoldi, Paolo & Mosconi, Rocco, 2020. "Do energy efficiency policies save energy? A new approach based on energy policy indicators (in the EU Member States)," Energy Policy, Elsevier, vol. 139(C).
    18. Chowdhury, Jahedul Islam & Hu, Yukun & Haltas, Ismail & Balta-Ozkan, Nazmiye & Matthew, George Jr. & Varga, Liz, 2018. "Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1153-1178.
    19. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.
    20. Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
    21. Bühler, Fabian & Guminski, Andrej & Gruber, Anna & Nguyen, Tuong-Van & von Roon, Serafin & Elmegaard, Brian, 2018. "Evaluation of energy saving potentials, costs and uncertainties in the chemical industry in Germany," Applied Energy, Elsevier, vol. 228(C), pages 2037-2049.
    22. Afshari, Afshin & Friedrich, Luiz, 2016. "A proposal to introduce tradable energy savings certificates in the emirate of Abu Dhabi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1342-1351.
    23. Wada, Kenichi & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi, 2012. "Energy efficiency opportunities in the residential sector and their feasibility," Energy, Elsevier, vol. 48(1), pages 5-10.
    24. Paolo Zangheri & Marina Economidou & Nicola Labanca, 2019. "Progress in the Implementation of the EU Energy Efficiency Directive through the Lens of the National Annual Reports," Energies, MDPI, vol. 12(6), pages 1-16, March.
    25. Duzgun, B. & Komurgoz, G., 2014. "Turkey's energy efficiency assessment: White Certificates Systems and their applicability in Turkey," Energy Policy, Elsevier, vol. 65(C), pages 465-474.
    26. Simsek, Yeliz & Lorca, Álvaro & Urmee, Tania & Bahri, Parisa A. & Escobar, Rodrigo, 2019. "Review and assessment of energy policy developments in Chile," Energy Policy, Elsevier, vol. 127(C), pages 87-101.
    27. Jan Rosenow, Cor Leguijt, Zsuzsanna Pato, Nick Eyre, and Tina Fawcet, 2016. "An ex-ante evaluation of the EU Energy Efficiency Directive - Article 7," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    28. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    29. Fan, Yuling & Xia, Xiaohua, 2017. "A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance," Applied Energy, Elsevier, vol. 189(C), pages 327-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gökay Yörük & Ugur Bac & Fatma Yerlikaya-Özkurt & Kamil Demirberk Ünlü, 2023. "Strategic Electricity Production Planning of Turkey via Mixed Integer Programming Based on Time Series Forecasting," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    2. Fouiteh, Imane & Cabrera Santelices, José Daniel & Patel, Martin K., 2023. "How committed are swiss utilities to energy saving without being obligated to do so?," Utilities Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomo Di Foggia & Massimo Beccarello & Marco Borgarello & Francesca Bazzocchi & Stefano Moscarelli, 2022. "Market-Based Instruments to Promote Energy Efficiency: Insights from the Italian Case," Energies, MDPI, vol. 15(20), pages 1-16, October.
    2. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2018. "Modeling the multiple benefits of electricity savings for emissions reduction on power grid level: A case study of China’s chemical industry," Applied Energy, Elsevier, vol. 230(C), pages 1603-1632.
    3. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2021. "Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions – A case study for China," Applied Energy, Elsevier, vol. 282(PB).
    4. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
    5. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Safarzadeh, Soroush & Hafezalkotob, Ashkan & Jafari, Hamed, 2022. "Energy supply chain empowerment through tradable green and white certificates: A pathway to sustainable energy generation," Applied Energy, Elsevier, vol. 323(C).
    7. Zauner, Christoph & Windholz, Bernd & Lauermann, Michael & Drexler-Schmid, Gerwin & Leitgeb, Thomas, 2020. "Development of an Energy Efficient Extrusion Factory employing a latent heat storage and a high temperature heat pump," Applied Energy, Elsevier, vol. 259(C).
    8. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    9. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    10. Liping Liao & Chukun Huang & Minzhe Du, 2022. "The Effect of Energy Quota Trading on Energy Saving in China: Insight from a Quasi-Natural Experiment," Energies, MDPI, vol. 15(22), pages 1-17, November.
    11. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    12. Prokop, Viktor & Gerstlberger, Wolfgang & Zapletal, David & Gyamfi, Solomon, 2023. "Do we need human capital heterogeneity for energy efficiency and innovativeness? Insights from European catching-up territories," Energy Policy, Elsevier, vol. 177(C).
    13. Dinga, Christian Doh & Wen, Zongguo, 2022. "China's green deal: Can China's cement industry achieve carbon neutral emissions by 2060?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Du, Minzhe & Wu, Fenger & Ye, Danfeng & Zhao, Yating & Liao, Liping, 2023. "Exploring the effects of energy quota trading policy on carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 124(C).
    15. Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
    16. A S M Monjurul Hasan & Mohammad Rokonuzzaman & Rashedul Amin Tuhin & Shah Md. Salimullah & Mahfuz Ullah & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Drivers and Barriers to Industrial Energy Efficiency in Textile Industries of Bangladesh," Energies, MDPI, vol. 12(9), pages 1-19, May.
    17. Hasim Altan & Bertug Ozarisoy, 2022. "An Analysis of the Development of Modular Building Design Elements to Improve Thermal Performance of a Representative High Rise Residential Estate in the Coastline City of Famagusta, Cyprus," Sustainability, MDPI, vol. 14(7), pages 1-50, March.
    18. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    19. Mikhail A. Averbukh & Nikolay A. Zhukov & Stanislav V. Khvorostenko & Vasiliy I. Panteleev, 2019. "Reducing Electric Power Losses in the System of Power Supply Due to Compensation of Higher Harmonics of Currents: Economic and Energy Efficiency Outcomes," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 396-403.
    20. Economidou, M. & Ringel, M. & Valentova, M. & Castellazzi, L. & Zancanella, P. & Zangheri, P. & Serrenho, T. & Paci, D. & Bertoldi, P., 2022. "Strategic energy and climate policy planning: Lessons learned from European energy efficiency policies," Energy Policy, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:163:y:2022:i:c:s0301421522000763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.