IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v122y2000i2p416-425.html
   My bibliography  Save this article

The AIM/end-use model and its application to forecast Japanese carbon dioxide emissions

Author

Listed:
  • Kainuma, Mikiko
  • Matsuoka, Yuzuru
  • Morita, Tsuneyuki

Abstract

No abstract is available for this item.

Suggested Citation

  • Kainuma, Mikiko & Matsuoka, Yuzuru & Morita, Tsuneyuki, 2000. "The AIM/end-use model and its application to forecast Japanese carbon dioxide emissions," European Journal of Operational Research, Elsevier, vol. 122(2), pages 416-425, April.
  • Handle: RePEc:eee:ejores:v:122:y:2000:i:2:p:416-425
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(99)00243-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matsuoka, Yuzuru & Kainuma, Mikiko & Morita, Tsuneyuki, 1995. "Scenario analysis of global warming using the Asian Pacific Integrated Model (AIM)," Energy Policy, Elsevier, vol. 23(4-5), pages 357-371.
    2. G. Hibino & M. Kainuma & Y. Matsuoka & T. Morita, 1996. "Two-level Mathematical Programming for Analyzing Subsidy Options to Reduce Greenhouse-Gas Emissions," Working Papers wp96129, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    2. Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
    3. Nurrohim, Agus & Sakugawa, Hiroshi, 2004. "A fuel-based inventory of NOx and SO2 emissions from manufacturing industries in Hiroshima Prefecture, Japan," Applied Energy, Elsevier, vol. 78(4), pages 355-369, August.
    4. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit & Masui, Toshihiko & Hanaoka, Tatsuya & Matsuoka, Yuzuru, 2015. "A quantitative analysis of Low Carbon Society (LCS) measures in Thai industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 178-195.
    5. Yunsheng Xie & Peng Wang & Yi Dou & Lei Yang & Songyan Ren & Daiqing Zhao, 2022. "Assessment on the Cost Synergies and Impacts among Measures on Energy Conservation, Decarbonization, and Air Pollutant Reductions Using an MCEE Model: A Case of Guangzhou, China," Energies, MDPI, vol. 15(4), pages 1-22, February.
    6. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2015. "Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach," Energy Policy, Elsevier, vol. 81(C), pages 199-214.
    7. Kaneko, Shinji & Yonamine, Asaka & Jung, Tae Yong, 2006. "Technology choice and CDM projects in China: case study of a small steel company in Shandong Province," Energy Policy, Elsevier, vol. 34(10), pages 1139-1151, July.
    8. Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
    9. Satoru Kasahara & Sergey Paltsev & John Reilly & Henry Jacoby & A. Ellerman, 2007. "Climate Change Taxes and Energy Efficiency in Japan," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(2), pages 377-410, June.
    10. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    11. Nurrohim, Agus & Sakugawa, Hiroshi, 2005. "Fuel-based inventory of NOx and SO2 emissions from motor vehicles in the Hiroshima Prefecture, Japan," Applied Energy, Elsevier, vol. 80(3), pages 291-305, March.
    12. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    13. Taesik Yun & Younggook Kim & Jang-yeop Kim, 2017. "Feasibility Study of the Post-2020 Commitment to the Power Generation Sector in South Korea," Sustainability, MDPI, vol. 9(2), pages 1-19, February.
    14. Yang, Dewei & Liu, Dandan & Huang, Anmin & Lin, Jianyi & Xu, Lingxing, 2021. "Critical transformation pathways and socio-environmental benefits of energy substitution using a LEAP scenario modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Hiromi Yamamoto & Masahiro Sugiyama & Junichi Tsutsui, 2014. "Role of end-use technologies in long-term GHG reduction scenarios developed with the BET model," Climatic Change, Springer, vol. 123(3), pages 583-596, April.
    16. Chen, Jing-Ming & Yu, Biying & Wei, Yi-Ming, 2018. "Energy technology roadmap for ethylene industry in China," Applied Energy, Elsevier, vol. 224(C), pages 160-174.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
    2. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    3. Elin Berg & Snorre Kverndokk & Knut Einar Rosendahl, 1999. "Optimal Oil Exploration under Climate Treaties," Discussion Papers 245, Statistics Norway, Research Department.
    4. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.
    5. Jun U. Shepard & Bas J. van Ruijven & Behnam Zakeri, 2022. "Impacts of Trade Friction and Climate Policy on Global Energy Trade Network," Energies, MDPI, vol. 15(17), pages 1-21, August.
    6. G. Hibino & M. Kainuma & Y. Matsuoka & T. Morita, 1996. "Two-level Mathematical Programming for Analyzing Subsidy Options to Reduce Greenhouse-Gas Emissions," Working Papers wp96129, International Institute for Applied Systems Analysis.
    7. Changyi Liu & Xueli Shi & Guoquan Hu & Qiufeng Liu & Yunwei Dai & Wenyan Zhou & Chao Wei & Yunfei Cao, 2019. "A simple earth system model for C3IAM: based on BCC_CSM1.1 and CMIP5 simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1311-1325, December.
    8. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    9. Kejun Jiang & Xiulian Hu & Yuzuru Matsuoka & Tsuneyuki Morita, 1998. "Energy technology changes and CO2 emission scenarios in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 1(2), pages 141-160, December.
    10. Farrahi Moghaddam, Reza & Farrahi Moghaddam, Fereydoun & Cheriet, Mohamed, 2013. "A modified GHG intensity indicator: Toward a sustainable global economy based on a carbon border tax and emissions trading," Energy Policy, Elsevier, vol. 57(C), pages 363-380.
    11. Zhang, Chao & Wen, Zongguo & Chen, Jining, 2009. "An integrated model for technology forecasting to reduce pollutant emission in China's pulp industry," Resources, Conservation & Recycling, Elsevier, vol. 54(1), pages 62-72.
    12. Eppink, Florian V. & van den Bergh, Jeroen C.J.M. & Rietveld, Piet, 2004. "Modelling biodiversity and land use: urban growth, agriculture and nature in a wetland area," Ecological Economics, Elsevier, vol. 51(3-4), pages 201-216, December.
    13. Ashish Rana & Tsuneyuki Morita, 2000. "Scenarios for greenhouse gas emission mitigation: a review of modeling of strategies and policies in integrated assessment models," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 267-289, June.
    14. Shimazaki, Yoichi, 2003. "Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table," Energy Policy, Elsevier, vol. 31(15), pages 1685-1697, December.
    15. Kejun Jiang & Xiulian Hu & Yuzuru Matsuoka & Tsuneyuki Morita, 1998. "Energy technology changes and CO 2 emission scenarios in China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 1(2), pages 141-160, December.
    16. Hayashi, Ayami & Tokimatsu, Koji & Yamamoto, Hiromi & Mori, Shunsuke, 2006. "Narrative scenario development based on cross-impact analysis for the evaluation of global-warming mitigation options," Applied Energy, Elsevier, vol. 83(10), pages 1062-1075, October.
    17. Carlos Benavides & Luis Gonzales & Manuel Diaz & Rodrigo Fuentes & Gonzalo García & Rodrigo Palma-Behnke & Catalina Ravizza, 2015. "The Impact of a Carbon Tax on the Chilean Electricity Generation Sector," Energies, MDPI, vol. 8(4), pages 1-27, April.
    18. de Vries, Bert & Janssen, Marco & Beusen, Arthur, 1999. "Perspectives on global energy futures: simulations with the TIME model," Energy Policy, Elsevier, vol. 27(8), pages 477-494, August.
    19. Yue, Tian-Xiang & Jorgensen, Sven E. & Larocque, Guy R., 2011. "Progress in global ecological modelling," Ecological Modelling, Elsevier, vol. 222(14), pages 2172-2177.
    20. Reza Farrahi Moghaddam & Fereydoun Farrahi Moghaddam & Mohamed Cheriet, 2014. "IIGHGINT: A generalization to the modified GHG intensity universal indicator toward a production/consumption insensitive border carbon tax," Papers 1401.0301, arXiv.org, revised Apr 2014.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:122:y:2000:i:2:p:416-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.