IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v43y2015icp178-195.html
   My bibliography  Save this article

A quantitative analysis of Low Carbon Society (LCS) measures in Thai industrial sector

Author

Listed:
  • Selvakkumaran, Sujeetha
  • Limmeechokchai, Bundit
  • Masui, Toshihiko
  • Hanaoka, Tatsuya
  • Matsuoka, Yuzuru

Abstract

Energy is a commodity which impacts heavily upon the competitiveness of a country in the global scale. Thus, nations have begun to understand that utilization of energy affects its economic performance. In recent times, there has been a drive for global awareness on Low Carbon Society (LCS) measures, where carbon mitigation is at the forefront. Thus, this paper analyses the LCS measures for the Thai industrial sector. Thai industrial sector is the second highest CO2 emitting end-use sector and contributes approximately 30% to the national income of Thailand. The total CO2 emission from end use sectors in 2010 was 119Mton-CO2 and approximately 38% constituted industrial sector emissions. The primary objective of this research study is to quantitatively analyse the carbon mitigation possible in the Thai industrial sector and the co-benefits which accrue along with mitigation in various policy pathway scenarios. Thai industrial sector was modeled using Asia-Pacific Integrated Model (AIM)/Enduse. Three groups of scenarios under LCS, emission tax and reduction target principles were modeled along with the BAU case. Results show that LCS scenarios are capable of cumulative mitigation of approximately 35% by 2050 in comparison to the BAU case and the predominant technologies are the 2nd generation biomass and the CCS technology. The emission tax scenarios, where tax rates of 50, 100, 200 and 500 USD/t-CO2 were enforced show a maximum of 55% cumulative mitigation by 2050. Even though this reduction is higher than the LCS scenarios, there is no shift to long term renewable or sustainable technologies in the emission tax scenarios. The same applies to reduction target scenarios as well. The co-benefits, which were measured along the themes of energy security and local air pollutant mitigation show maximum benefits accruing to the LCS scenarios, where renewable fuel share increases, whilst primary energy intensity and carbon intensity decreases. The LCS scenarios also show a mitigation of local air pollutants such as SO2 and Particulate Matter.

Suggested Citation

  • Selvakkumaran, Sujeetha & Limmeechokchai, Bundit & Masui, Toshihiko & Hanaoka, Tatsuya & Matsuoka, Yuzuru, 2015. "A quantitative analysis of Low Carbon Society (LCS) measures in Thai industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 178-195.
  • Handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:178-195
    DOI: 10.1016/j.rser.2014.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114009575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Adrian & Thomson, Elspeth, 2009. "The development of biofuels in Asia," Applied Energy, Elsevier, vol. 86(Supplemen), pages 11-20, November.
    2. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2013. "Energy security and co-benefits of energy efficiency improvement in three Asian countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 491-503.
    3. Costantini, Valeria & Gracceva, Francesco & Markandya, Anil & Vicini, Giorgio, 2007. "Security of energy supply: Comparing scenarios from a European perspective," Energy Policy, Elsevier, vol. 35(1), pages 210-226, January.
    4. Aunan, Kristin & Fang, Jinghua & Vennemo, Haakon & Oye, Kenneth & Seip, Hans M., 2004. "Co-benefits of climate policy--lessons learned from a study in Shanxi, China," Energy Policy, Elsevier, vol. 32(4), pages 567-581, March.
    5. Cabalu, Helen, 2010. "Indicators of security of natural gas supply in Asia," Energy Policy, Elsevier, vol. 38(1), pages 218-225, January.
    6. Vivoda, Vlado, 2010. "Evaluating energy security in the Asia-Pacific region: A novel methodological approach," Energy Policy, Elsevier, vol. 38(9), pages 5258-5263, September.
    7. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    8. Gnansounou, Edgard, 2008. "Assessing the energy vulnerability: Case of industrialised countries," Energy Policy, Elsevier, vol. 36(10), pages 3734-3744, October.
    9. Bielecki, J., 2002. "Energy security: is the wolf at the door?," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(2), pages 235-250.
    10. Rypdal, Kristin & Rive, Nathan & Astrom, Stefan & Karvosenoja, Niko & Aunan, Kristin & Bak, Jesper L. & Kupiainen, Kaarle & Kukkonen, Jaakko, 2007. "Nordic air quality co-benefits from European post-2012 climate policies," Energy Policy, Elsevier, vol. 35(12), pages 6309-6322, December.
    11. Shrestha, Ram M. & Malla, Sunil & Liyanage, Migara H., 2007. "Scenario-based analyses of energy system development and its environmental implications in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3179-3193, June.
    12. Gomi, Kei & Shimada, Kouji & Matsuoka, Yuzuru, 2010. "A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city," Energy Policy, Elsevier, vol. 38(9), pages 4783-4796, September.
    13. Gupta, Eshita, 2008. "Oil vulnerability index of oil-importing countries," Energy Policy, Elsevier, vol. 36(3), pages 1195-1211, March.
    14. Chester, Lynne, 2010. "Conceptualising energy security and making explicit its polysemic nature," Energy Policy, Elsevier, vol. 38(2), pages 887-895, February.
    15. Kainuma, Mikiko & Matsuoka, Yuzuru & Morita, Tsuneyuki, 2000. "The AIM/end-use model and its application to forecast Japanese carbon dioxide emissions," European Journal of Operational Research, Elsevier, vol. 122(2), pages 416-425, April.
    16. Hughes, Nick & Strachan, Neil, 2010. "Methodological review of UK and international low carbon scenarios," Energy Policy, Elsevier, vol. 38(10), pages 6056-6065, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Zhifang & Xiao, Tian & Chen, Xiaohong & Wang, Chang, 2016. "A carbon risk prediction model for Chinese heavy-polluting industrial enterprises based on support vector machine," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 304-315.
    2. Chunark, Puttipong & Limmeechokchai, Bundit & Fujimori, Shinichiro & Masui, Toshihiko, 2017. "Renewable energy achievements in CO2 mitigation in Thailand's NDCs," Renewable Energy, Elsevier, vol. 114(PB), pages 1294-1305.
    3. Pradhan, Bijay B. & Limmeechokchai, Bundit & Shrestha, Ram M., 2019. "Implications of biogas and electric cooking technologies in residential sector in Nepal – A long term perspective using AIM/Enduse model," Renewable Energy, Elsevier, vol. 143(C), pages 377-389.
    4. Chen, Jing-Ming & Yu, Biying & Wei, Yi-Ming, 2018. "Energy technology roadmap for ethylene industry in China," Applied Energy, Elsevier, vol. 224(C), pages 160-174.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    2. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2015. "Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach," Energy Policy, Elsevier, vol. 81(C), pages 199-214.
    3. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    4. Wang, Qiang & Zhou, Kan, 2017. "A framework for evaluating global national energy security," Applied Energy, Elsevier, vol. 188(C), pages 19-31.
    5. Thauan Santos & Amaro Olímpio Pereira Júnior & Emilio Lèbre La Rovere, 2017. "Evaluating Energy Policies through the Use of a Hybrid Quantitative Indicator-Based Approach: The Case of Mercosur," Energies, MDPI, vol. 10(12), pages 1-15, December.
    6. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    7. Liu, Litao & Cao, Zhi & Liu, Xiaojie & Shi, Lei & Cheng, Shengkui & Liu, Gang, 2020. "Oil security revisited: An assessment based on complex network analysis," Energy, Elsevier, vol. 194(C).
    8. Pan, Yuling & Dong, Feng, 2022. "Design of energy use rights trading policy from the perspective of energy vulnerability," Energy Policy, Elsevier, vol. 160(C).
    9. Mu Li & Li Li & Wadim Strielkowski, 2019. "The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China," Energies, MDPI, vol. 12(11), pages 1-22, June.
    10. Kapil Narula & B. Sudhakara Reddy, 2014. "Three Blind Men and an Elephant: The Case of Energy Indices to Measure Energy Security and Sustainability," Working Papers id:5989, eSocialSciences.
    11. Narula, Kapil & Reddy, B. Sudhakara, 2015. "Three blind men and an elephant: The case of energy indices to measure energy security and energy sustainability," Energy, Elsevier, vol. 80(C), pages 148-158.
    12. Lu, Weiwei & Su, Meirong & Zhang, Yan & Yang, Zhifeng & Chen, Bin & Liu, Gengyuan, 2014. "Assessment of energy security in China based on ecological network analysis: A perspective from the security of crude oil supply," Energy Policy, Elsevier, vol. 74(C), pages 406-413.
    13. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    14. Larsen, Erik R. & Osorio, Sebastian & van Ackere, Ann, 2017. "A framework to evaluate security of supply in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 646-655.
    15. Blum, Helcio & Legey, Luiz F.L., 2012. "The challenging economics of energy security: Ensuring energy benefits in support to sustainable development," Energy Economics, Elsevier, vol. 34(6), pages 1982-1989.
    16. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    17. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    18. Song, Yan & Zhang, Ming & Sun, Ruifeng, 2019. "Using a new aggregated indicator to evaluate China's energy security," Energy Policy, Elsevier, vol. 132(C), pages 167-174.
    19. Månsson, André & Johansson, Bengt & Nilsson, Lars J., 2014. "Assessing energy security: An overview of commonly used methodologies," Energy, Elsevier, vol. 73(C), pages 1-14.
    20. Dakpogan, Arnaud & Smit, Eon, 2018. "Measuring electricity security risk," MPRA Paper 89295, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:43:y:2015:i:c:p:178-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.