IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i1p241-d127853.html
   My bibliography  Save this article

Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective

Author

Listed:
  • Lijun Zeng

    (Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai 200030, China
    College of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China)

  • Laijun Zhao

    (Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai 200030, China
    China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200030, China
    Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China)

  • Qin Wang

    (Sino-US Global Logistics Institute, Shanghai Jiao Tong University, Shanghai 200030, China)

  • Bingcheng Wang

    (College of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China)

  • Yuan Ma

    (College of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China)

  • Wei Cui

    (College of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China)

  • Yujing Xie

    (China Institute of Regulation Research, Zhejiang University of Finance & Economics, Hangzhou 310018, China)

Abstract

As the world faces great challenges from climate change and environmental pollution, China urgently requires energy saving, emission reduction, and carbon reduction programmes. However, the non-cooperative energy saving model (NCESM), the simple regulation mode that is China’s main model for energy saving, is not beneficial for optimization of energy and resource distribution, and cannot effectively motivate energy saving at the provincial level. Therefore, we propose an interprovincial cooperative energy saving model (CESM) from the perspective of electricity utilization, with the object of maximizing the benefits from electricity utilization of the cooperation union based on achieving the energy saving goals of the union as a whole. The CESM consists of two parts: (1) an optimization model that calculates the optimal quantities of electricity consumption for each participating province to meet the joint energy saving goal; and (2) a model that distributes the economic benefits of the cooperation among the provinces in the cooperation based on the Shapley value method. We applied the CESM to the case of an interprovincial union of Shanghai, Sichuan, Shanxi, and Gansu in China. The results, based on the data from 2001–2014, show that cooperation can significantly increase the benefits of electricity utilization for each province in the union. The total benefits of the union from utilization of electricity increased 38.38%, or 353.98 billion CNY, while the benefits to Shanghai, Sichuan, Shanxi, and Gansu were 200.28, 58.37, 57.11, and 38.22 billion CNY respectively greater under the CESM than the NCESM. The implementation of the CESM provides the provincial governments not only a flexible and incentive way to achieve short-term goals, but also a feasible and effective path to realize long-term energy saving strategies. To test the impact of different parameter values on the results of the CESM, a sensitivity analysis was conducted. Some policy recommendations are made at the central government level and the provincial government level to promote the implementation of the CESM.

Suggested Citation

  • Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:241-:d:127853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Boqiang & Wu, Ya & Zhang, Li, 2011. "Estimates of the potential for energy conservation in the Chinese steel industry," Energy Policy, Elsevier, vol. 39(6), pages 3680-3689, June.
    2. Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
    3. Al-Mulali, Usama & Ozturk, Ilhan, 2014. "Are energy conservation policies effective without harming economic growth in the Gulf Cooperation Council countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 639-650.
    4. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    5. Nikolaidis, Yiannis & Pilavachi, Petros A. & Chletsis, Alexandros, 2009. "Economic evaluation of energy saving measures in a common type of Greek building," Applied Energy, Elsevier, vol. 86(12), pages 2550-2559, December.
    6. ApSimon, Helen M & Warren, Rachel F, 1996. "Transboundary air pollution in Europe," Energy Policy, Elsevier, vol. 24(7), pages 631-640, July.
    7. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    8. Bailey, Peter D & Gough, Clair A & Millock, Katrin & Chadwick, Michael J, 1996. "Prospects for the joint implementation of sulphur emission reductions in Europe," Energy Policy, Elsevier, vol. 24(6), pages 507-516, June.
    9. Parfomak, Paul W., 1997. "Falling generation costs, environmental externalities and the economics of electricity conservation," Energy Policy, Elsevier, vol. 25(10), pages 845-860, August.
    10. Weishi Zhang & David I. Stern & Xianbing Liu & Wenjia Cai & Can Wang, 2017. "An analysis of the costs of energy saving and CO2 mitigation in rural households in China," CCEP Working Papers 1704, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    11. Wang, Qiang & Chen, Yong, 2010. "Energy saving and emission reduction revolutionizing China's environmental protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 535-539, January.
    12. Agarwal, Sumit & Rengarajan, Satyanarain & Sing, Tien Foo & Yang, Yang, 2017. "Nudges from school children and electricity conservation: Evidence from the “Project Carbon Zero” campaign in Singapore," Energy Economics, Elsevier, vol. 61(C), pages 29-41.
    13. Castleberry, Becca & Gliedt, Travis & Greene, J. Scott, 2016. "Assessing drivers and barriers of energy-saving measures in Oklahoma’s public schools," Energy Policy, Elsevier, vol. 88(C), pages 216-228.
    14. Mehmood Mirza, Faisal & Bergland, Olvar & Afzal, Naila, 2014. "Electricity conservation policies and sectorial output in Pakistan: An empirical analysis," Energy Policy, Elsevier, vol. 73(C), pages 757-766.
    15. Kua, H.W. & Wong, S.E., 2012. "Lessons for integrated household energy conservation policies from an intervention study in Singapore," Energy Policy, Elsevier, vol. 47(C), pages 49-56.
    16. Guo, Fei & Kurdgelashvili, Lado & Bengtsson, Magnus & Akenji, Lewis, 2016. "Analysis of achievable residential energy-saving potential and its implications for effective policy interventions: A study of Xiamen city in southern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 507-520.
    17. Carfì, David & Schilirò, Daniele, 2012. "A coopetitive model for the green economy," Economic Modelling, Elsevier, vol. 29(4), pages 1215-1219.
    18. Jin-Peng Liu & Qian-Ru Yang & Lin He, 2017. "Total-Factor Energy Efficiency (TFEE) Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques," Energies, MDPI, vol. 10(7), pages 1-14, July.
    19. Mullaly, Cathy, 1998. "Home energy use behaviour: a necessary component of successful local government home energy conservation (LGHEC) programs," Energy Policy, Elsevier, vol. 26(14), pages 1041-1052, December.
    20. Kostka, Genia & Shin, Kyoung, 2013. "Energy conservation through energy service companies: Empirical analysis from China," Energy Policy, Elsevier, vol. 52(C), pages 748-759.
    21. Li, Li & Lu, Yonglong & Shi, Yajuan & Wang, Tieyu & Luo, Wei & Gosens, Jorrit & Chen, Peng & Li, Haiqian, 2013. "Integrated technology selection for energy conservation and PAHs control in iron and steel industry: Methodology and case study," Energy Policy, Elsevier, vol. 54(C), pages 194-203.
    22. Magirou, Vangelis F., 1984. "Switching away from oil : A game-theoretic approach," Resources and Energy, Elsevier, vol. 6(4), pages 397-410, December.
    23. Shimoda, Yoshiyuki & Asahi, Takahiro & Taniguchi, Ayako & Mizuno, Minoru, 2007. "Evaluation of city-scale impact of residential energy conservation measures using the detailed end-use simulation model," Energy, Elsevier, vol. 32(9), pages 1617-1633.
    24. Al-Mofleh, Anwar & Taib, Soib & Mujeebu, M. Abdul & Salah, Wael, 2009. "Analysis of sectoral energy conservation in Malaysia," Energy, Elsevier, vol. 34(6), pages 733-739.
    25. Li, Huimin & Zhao, Xiaofan & Yu, Yuqing & Wu, Tong & Qi, Ye, 2016. "China's numerical management system for reducing national energy intensity," Energy Policy, Elsevier, vol. 94(C), pages 64-76.
    26. Stern, David I., 2000. "A multivariate cointegration analysis of the role of energy in the US macroeconomy," Energy Economics, Elsevier, vol. 22(2), pages 267-283, April.
    27. Geng, Jing & Lu, Yonglong & Wang, Tieyu & Giesy, John P. & Chen, Chunli, 2010. "Effects of energy conservation in major energy-intensive industrial sectors on emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in China," Energy Policy, Elsevier, vol. 38(5), pages 2346-2356, May.
    28. Supasa, Tharinya & Hsiau, Shu-San & Lin, Shih-Mo & Wongsapai, Wongkot & Wu, Jiunn-Chi, 2016. "Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010," Energy Policy, Elsevier, vol. 98(C), pages 210-220.
    29. Keay, Malcolm, 2016. "UK energy policy – Stuck in ideological limbo?," Energy Policy, Elsevier, vol. 94(C), pages 247-252.
    30. Price, Lynn & Levine, Mark D. & Zhou, Nan & Fridley, David & Aden, Nathaniel & Lu, Hongyou & McNeil, Michael & Zheng, Nina & Qin, Yining & Yowargana, Ping, 2011. "Assessment of China's energy-saving and emission-reduction accomplishments and opportunities during the 11th Five Year Plan," Energy Policy, Elsevier, vol. 39(4), pages 2165-2178, April.
    31. Mohammed Ahiduzzaman & Abul K. M. Sadrul Islam, 2009. "Energy Utilization and Environmental Aspects of Rice Processing Industries in Bangladesh," Energies, MDPI, vol. 2(1), pages 1-16, March.
    32. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    33. Zhang, Zhong Xiang, 1995. "Energy conservation in China : An international perspective," Energy Policy, Elsevier, vol. 23(2), pages 159-166, February.
    34. Lin, Boqiang & Yang, Lisha, 2013. "The potential estimation and factor analysis of China′s energy conservation on thermal power industry," Energy Policy, Elsevier, vol. 62(C), pages 354-362.
    35. Lozano, S. & Moreno, P. & Adenso-Díaz, B. & Algaba, E., 2013. "Cooperative game theory approach to allocating benefits of horizontal cooperation," European Journal of Operational Research, Elsevier, vol. 229(2), pages 444-452.
    36. Jones, Emma & Leach, Matthew & Wade, Joanne, 2000. "Local policies for DSM: the UK's home energy conservation act," Energy Policy, Elsevier, vol. 28(3), pages 201-211, March.
    37. Özkara, Yücel & Atak, Mehmet, 2015. "Regional total-factor energy efficiency and electricity saving potential of manufacturing industry in Turkey," Energy, Elsevier, vol. 93(P1), pages 495-510.
    38. Zhao, Yue & Ke, Jing & Ni, Chun Chun & McNeil, Michael & Khanna, Nina Zheng & Zhou, Nan & Fridley, David & Li, Qiqiang, 2014. "A comparative study of energy consumption and efficiency of Japanese and Chinese manufacturing industry," Energy Policy, Elsevier, vol. 70(C), pages 45-56.
    39. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    40. Sardianou, Eleni, 2007. "Estimating energy conservation patterns of Greek households," Energy Policy, Elsevier, vol. 35(7), pages 3778-3791, July.
    41. He, Jiankun & Liu, Bin & Zhang, Aling, 2006. "Analysis of the effect and potential of energy conservation in China," Energy Policy, Elsevier, vol. 34(18), pages 3702-3708, December.
    42. Ke, Jing & Price, Lynn & Ohshita, Stephanie & Fridley, David & Khanna, Nina Zheng & Zhou, Nan & Levine, Mark, 2012. "China's industrial energy consumption trends and impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects," Energy Policy, Elsevier, vol. 50(C), pages 562-569.
    43. Bhati, Abhishek & Hansen, Michael & Chan, Ching Man, 2017. "Energy conservation through smart homes in a smart city: A lesson for Singapore households," Energy Policy, Elsevier, vol. 104(C), pages 230-239.
    44. Raza, Syed Ali & Shahbaz, Muhammad & Nguyen, Duc Khuong, 2015. "Energy conservation policies, growth and trade performance: Evidence of feedback hypothesis in Pakistan," Energy Policy, Elsevier, vol. 80(C), pages 1-10.
    45. Chang, Ching-Chih & Soruco Carballo, Claudia Fabiola, 2011. "Energy conservation and sustainable economic growth: The case of Latin America and the Caribbean," Energy Policy, Elsevier, vol. 39(7), pages 4215-4221, July.
    46. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    47. Petrosjan, Leon & Zaccour, Georges, 2003. "Time-consistent Shapley value allocation of pollution cost reduction," Journal of Economic Dynamics and Control, Elsevier, vol. 27(3), pages 381-398, January.
    48. Zhao, Xiaofan & Li, Huimin & Wu, Liang & Qi, Ye, 2014. "Implementation of energy-saving policies in China: How local governments assisted industrial enterprises in achieving energy-saving targets," Energy Policy, Elsevier, vol. 66(C), pages 170-184.
    49. Slingerland, Stephan, 1997. "Energy conservation and organization of electricity supply in the Netherlands," Energy Policy, Elsevier, vol. 25(2), pages 193-203, February.
    50. Fukasaku, Yukiko, 1995. "Energy and environment policy integration: The case of energy conservation policies and technologies in Japan," Energy Policy, Elsevier, vol. 23(12), pages 1063-1076, December.
    51. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
    52. Lo, Kevin & Wang, Mark Y., 2013. "Energy conservation in China’s Twelfth Five-Year Plan period: Continuation or paradigm shift?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 499-507.
    53. Wei, Taoyuan, 2007. "Impact of energy efficiency gains on output and energy use with Cobb-Douglas production function," Energy Policy, Elsevier, vol. 35(4), pages 2023-2030, April.
    54. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
    55. Antimo Barbato & Cristiana Bolchini & Angela Geronazzo & Elisa Quintarelli & Andrei Palamarciuc & Alessandro Pitì & Cristina Rottondi & Giacomo Verticale, 2016. "Energy Optimization and Management of Demand Response Interactions in a Smart Campus," Energies, MDPI, vol. 9(6), pages 1-20, May.
    56. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
    57. Emeakaroha, Anthony & Ang, Chee Siang & Yan, Yong & Hopthrow, Tim, 2014. "Integrating persuasive technology with energy delegates for energy conservation and carbon emission reduction in a university campus," Energy, Elsevier, vol. 76(C), pages 357-374.
    58. Hu, Yuan, 2012. "Energy conservation assessment of fixed-asset investment projects: An attempt to improve energy efficiency in China," Energy Policy, Elsevier, vol. 43(C), pages 327-334.
    59. Leighty, Wayne & Meier, Alan, 2011. "Accelerated electricity conservation in Juneau, Alaska: A study of household activities that reduced demand 25%," Energy Policy, Elsevier, vol. 39(5), pages 2299-2309, May.
    60. Fromme, JW, 1996. "Energy conservation in the Russian manufacturing industry. Potentials and obstacles," Energy Policy, Elsevier, vol. 24(3), pages 245-252, March.
    61. Goldblatt, David L. & Hartmann, Christoph & Durrenberger, Gregor, 2005. "Combining interviewing and modeling for end-user energy conservation," Energy Policy, Elsevier, vol. 33(2), pages 257-271, January.
    62. Al-Ajlan, S.A. & Al-Ibrahim, A.M. & Abdulkhaleq, M. & Alghamdi, F., 2006. "Developing sustainable energy policies for electrical energy conservation in Saudi Arabia," Energy Policy, Elsevier, vol. 34(13), pages 1556-1565, September.
    63. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2017. "Benefit allocation for distributed energy network participants applying game theory based solutions," Energy, Elsevier, vol. 119(C), pages 384-391.
    64. Zhao, Xiaofan & Wu, Liang, 2016. "Interpreting the Evolution of the Energy-Saving Target Allocation System in China (2006–13): A View of Policy Learning," World Development, Elsevier, vol. 82(C), pages 83-94.
    65. Dixon, Robert K. & McGowan, Elizabeth & Onysko, Ganna & Scheer, Richard M., 2010. "US energy conservation and efficiency policies: Challenges and opportunities," Energy Policy, Elsevier, vol. 38(11), pages 6398-6408, November.
    66. Brounen, Dirk & Kok, Nils & Quigley, John M., 2013. "Energy literacy, awareness, and conservation behavior of residential households," Energy Economics, Elsevier, vol. 38(C), pages 42-50.
    67. Li, Li & Tan, Zhongfu & Wang, Jianhui & Xu, Jun & Cai, Chengkai & Hou, Yong, 2011. "Energy conservation and emission reduction policies for the electric power industry in China," Energy Policy, Elsevier, vol. 39(6), pages 3669-3679, June.
    68. Kajsa Ellegård & Jenny Palm, 2015. "Who Is Behaving? Consequences for Energy Policy of Concept Confusion," Energies, MDPI, vol. 8(8), pages 1-20, July.
    69. Beatrice Castellani & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2015. "Experimental Investigation on the Effect of Phase Change Materials on Compressed Air Expansion in CAES Plants," Sustainability, MDPI, vol. 7(8), pages 1-14, July.
    70. Nandi, Paritosh & Basu, Sujay, 2008. "A review of energy conservation initiatives by the Government of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 518-530, February.
    71. Nasiri, Fuzhan & Zaccour, Georges, 2009. "An exploratory game-theoretic analysis of biomass electricity generation supply chain," Energy Policy, Elsevier, vol. 37(11), pages 4514-4522, November.
    72. Wu, Xuecheng & Zhao, Liang & Zhang, Yongxin & Zhao, Lingjie & Zheng, Chenghang & Gao, Xiang & Cen, Kefa, 2016. "Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China," Applied Energy, Elsevier, vol. 184(C), pages 171-183.
    73. George Halkos, 1996. "Incomplete information in the acid rain game," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 23(2), pages 129-148, June.
    74. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    75. Niu, Shuwen & Ding, Yongxia & Niu, Yunzhu & Li, Yixin & Luo, Guanghua, 2011. "Economic growth, energy conservation and emissions reduction: A comparative analysis based on panel data for 8 Asian-Pacific countries," Energy Policy, Elsevier, vol. 39(4), pages 2121-2131, April.
    76. Robert H. Rasche & John A. Tatom, 1977. "Energy resources and potential GNP," Review, Federal Reserve Bank of St. Louis, vol. 59(Jun), pages 10-24.
    77. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    78. Lise, Wietze & Linderhof, Vincent & Kuik, Onno & Kemfert, Claudia & Ostling, Robert & Heinzow, Thomas, 2006. "A game theoretic model of the Northwestern European electricity market--market power and the environment," Energy Policy, Elsevier, vol. 34(15), pages 2123-2136, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Zhang & Jiaorong Ren & Kaichao Xiao & Zhenzhi Lin & Jiayu Xu & Wei Wang & Chuanxun Pei, 2019. "Cost Allocation Mechanism Design for Urban Utility Tunnel Construction Based on Cooperative Game and Resource Dependence Theory," Energies, MDPI, vol. 12(17), pages 1-16, August.
    2. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    3. Xue, Jian & Zhang, Wenjing & Zhao, Laijun & Zhu, Di & Li, Lei & Gong, Ruifeng, 2022. "A cooperative inter-provincial model for energy conservation that accounts for employment and social energy costs," Energy, Elsevier, vol. 239(PB).
    4. Zeng, Lijun & Du, Wenjing & Zhang, Wencheng & Zhao, Laijun & Wang, Zhaohua, 2023. "An inter-provincial cooperation model under Renewable Portfolio Standard policy," Energy, Elsevier, vol. 269(C).
    5. Kengo Suzuki & Ryohei Ishiwata, 2022. "Impact of a Carbon Tax on Energy Transition in a Deregulated Market: A Game-Based Experimental Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    6. Liaqat Ali & S. M. Muyeen & Hamed Bizhani & Arindam Ghosh, 2019. "Comparative Study on Game-Theoretic Optimum Sizing and Economical Analysis of a Networked Microgrid," Energies, MDPI, vol. 12(20), pages 1-14, October.
    7. Pin Li & Jin-Suo Zhang, 2018. "A New Hybrid Method for China’s Energy Supply Security Forecasting Based on ARIMA and XGBoost," Energies, MDPI, vol. 11(7), pages 1-28, June.
    8. Lijun Zeng & Wencheng Zhang & Muyi Yang, 2023. "A Bi-Level Optimization Model for Inter-Provincial Energy Consumption Transfer Tax in China," Energies, MDPI, vol. 16(21), pages 1-20, October.
    9. Peng Wang & Chunsheng Wang & Yukun Hu & Liz Varga & Wei Wang, 2018. "Power Generation Expansion Optimization Model Considering Multi-Scenario Electricity Demand Constraints: A Case Study of Zhejiang Province, China," Energies, MDPI, vol. 11(6), pages 1-15, June.
    10. Xue, Jian & Guo, Na & Zhao, Laijun & Zhu, Di & Ji, Xiaoqin, 2020. "A cooperative inter-provincial model for energy conservation based on futures trading," Energy, Elsevier, vol. 212(C).
    11. Zeng, Lijun & Du, Wenjing & Zhao, Laijun & Zhan, Yanhong, 2023. "An inter-provincial transfer fee model under renewable portfolio standard policy," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippini, Massimo & Geissmann, Thomas & Karplus, Valerie J. & Zhang, Da, 2020. "The productivity impacts of energy efficiency programs in developing countries: Evidence from iron and steel firms in China," China Economic Review, Elsevier, vol. 59(C).
    2. Wei, Wei & Mushtaq, Zulqarnain & Sharif, Maimoona & Zeng, Xiaowu & Wan-Li, Zhang & Qaisrani, Mumtaz A., 2020. "Evaluating the coal rebound effect in energy intensive industries of China," Energy, Elsevier, vol. 207(C).
    3. Ma, Ben & Zheng, Xinye, 2018. "Biased data revisions: Unintended consequences of China's energy-saving mandates," China Economic Review, Elsevier, vol. 48(C), pages 102-113.
    4. Lo, Kevin, 2014. "A critical review of China's rapidly developing renewable energy and energy efficiency policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 508-516.
    5. Guoxing Zhang & Zhenhua Zhang & Xiulin Gao & Lean Yu & Shouyang Wang & Yingluo Wang, 2017. "Impact of Energy Conservation and Emissions Reduction Policy Means Coordination on Economic Growth: Quantitative Evidence from China," Sustainability, MDPI, vol. 9(5), pages 1-19, April.
    6. Zhao, Xiaofan & Li, Huimin & Wu, Liang & Qi, Ye, 2014. "Implementation of energy-saving policies in China: How local governments assisted industrial enterprises in achieving energy-saving targets," Energy Policy, Elsevier, vol. 66(C), pages 170-184.
    7. Tu, Zhengge & Hu, Tianyang & Shen, Renjun, 2019. "Evaluating public participation impact on environmental protection and ecological efficiency in China: Evidence from PITI disclosure," China Economic Review, Elsevier, vol. 55(C), pages 111-123.
    8. Zheng, Qingying & Lin, Boqiang, 2020. "Achieving energy conservation targets in a more cost-effective way: Case study of pulp and paper industry in China," Energy, Elsevier, vol. 191(C).
    9. Mian Yang & Zheng Hu & Jiahai Yuan, 2016. "The recent history and successes of China's energy efficiency policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(6), pages 715-730, November.
    10. Li, Huimin & Zhao, Xiaofan & Yu, Yuqing & Wu, Tong & Qi, Ye, 2016. "China's numerical management system for reducing national energy intensity," Energy Policy, Elsevier, vol. 94(C), pages 64-76.
    11. Guilhot, Laëtitia, 2022. "An analysis of China's energy policy from 1981 to 2020: Transitioning towards to a diversified and low-carbon energy system," Energy Policy, Elsevier, vol. 162(C).
    12. Liu, Yang & Zhang, Congrui & Xu, Xiaochuan & Ge, Yongxiang & Ren, Gaofeng, 2022. "Assessment of energy conservation potential and cost in open-pit metal mines: Bottom-up approach integrated energy conservation supply curve and ultimate pit limit," Energy Policy, Elsevier, vol. 163(C).
    13. Xue, Jian & Guo, Na & Zhao, Laijun & Zhu, Di & Ji, Xiaoqin, 2020. "A cooperative inter-provincial model for energy conservation based on futures trading," Energy, Elsevier, vol. 212(C).
    14. Yang, Tian-Jian & Zhang, Yue-Jun & Huang, Jin & Peng, Ruo-Hong, 2013. "Estimating the energy saving potential of telecom operators in China," Energy Policy, Elsevier, vol. 61(C), pages 448-459.
    15. Wang, You & Gong, Xu, 2022. "Analyzing the difference evolution of provincial energy consumption in China using the functional data analysis method," Energy Economics, Elsevier, vol. 105(C).
    16. Schreifels, Jeremy J. & Fu, Yale & Wilson, Elizabeth J., 2012. "Sulfur dioxide control in China: policy evolution during the 10th and 11th Five-year Plans and lessons for the future," Energy Policy, Elsevier, vol. 48(C), pages 779-789.
    17. Wang, Zhenfeng & Xu, Guangyin & Lin, Ruojue & Wang, Heng & Ren, Jingzheng, 2019. "Energy performance contracting, risk factors, and policy implications: Identification and analysis of risks based on the best-worst network method," Energy, Elsevier, vol. 170(C), pages 1-13.
    18. Li, Kai & Qi, Shouzhou & Shi, Xunpeng, 2023. "Environmental policies and low-carbon industrial upgrading: Heterogenous effects among policies, sectors, and technologies in China," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    19. Zhao, Xiaofan & Wu, Liang, 2016. "Interpreting the Evolution of the Energy-Saving Target Allocation System in China (2006–13): A View of Policy Learning," World Development, Elsevier, vol. 82(C), pages 83-94.
    20. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:1:p:241-:d:127853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.