IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v7y2019i1p9-d212850.html
   My bibliography  Save this article

A Parametric Factor Model of the Term Structure of Mortality

Author

Listed:
  • Niels Haldrup

    (Center for Research in Econometric Analysis of Time Series (CREATES), Department of Economics and Business Economics, Aarhus University, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark)

  • Carsten P. T. Rosenskjold

    (Center for Research in Econometric Analysis of Time Series (CREATES), Department of Economics and Business Economics, Aarhus University, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark)

Abstract

The prototypical Lee–Carter mortality model is characterized by a single common time factor that loads differently across age groups. In this paper, we propose a parametric factor model for the term structure of mortality where multiple factors are designed to influence the age groups differently via parametric loading functions. We identify four different factors: a factor common for all age groups, factors for infant and adult mortality, and a factor for the “accident hump” that primarily affects mortality of relatively young adults and late teenagers. Since the factors are identified via restrictions on the loading functions, the factors are not designed to be orthogonal but can be dependent and can possibly cointegrate when the factors have unit roots. We suggest two estimation procedures similar to the estimation of the dynamic Nelson–Siegel term structure model. First, a two-step nonlinear least squares procedure based on cross-section regressions together with a separate model to estimate the dynamics of the factors. Second, we suggest a fully specified model estimated by maximum likelihood via the Kalman filter recursions after the model is put on state space form. We demonstrate the methodology for US and French mortality data. We find that the model provides a good fit of the relevant factors and, in a forecast comparison with a range of benchmark models, it is found that, especially for longer horizons, variants of the parametric factor model have excellent forecast performance.

Suggested Citation

  • Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
  • Handle: RePEc:gam:jecnmx:v:7:y:2019:i:1:p:9-:d:212850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/7/1/9/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/7/1/9/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    2. Laurent Callot & Niels Haldrup & Malene Kallestrup-Lamb, 2016. "Deterministic and stochastic trends in the Lee–Carter mortality model," Applied Economics Letters, Taylor & Francis Journals, vol. 23(7), pages 486-493, May.
    3. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    4. Dorina Lazar & Michel M. Denuit, 2009. "A multivariate time series approach to projected life tables," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 806-823, November.
    5. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    6. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    7. McNown, Robert & Rogers, Andrei, 1992. "Forecasting cause-specific mortality using time series methods," International Journal of Forecasting, Elsevier, vol. 8(3), pages 413-432, November.
    8. Pfaff, Bernhard, 2008. "VAR, SVAR and SVEC Models: Implementation Within R Package vars," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i04).
    9. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    10. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    11. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    12. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    13. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    14. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    15. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    16. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    17. Koopman, Siem Jan & Mallee, Max I. P. & Van der Wel, Michel, 2010. "Analyzing the Term Structure of Interest Rates Using the Dynamic Nelson–Siegel Model With Time-Varying Parameters," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 329-343.
    18. Jurgen A. Doornik, 1998. "Approximations To The Asymptotic Distributions Of Cointegration Tests," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 573-593, December.
    19. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    20. Carlos Wong-Fupuy & Steven Haberman, 2004. "Projecting Mortality Trends," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 56-83.
    21. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    22. Piet De Jong & Leonie Tickle, 2006. "Extending Lee-Carter Mortality Forecasting," Mathematical Population Studies, Taylor & Francis Journals, vol. 13(1), pages 1-18.
    23. repec:hal:journl:peer-00844811 is not listed on IDEAS
    24. Jurgen A. Doornik, 1998. "Approximations To The Asymptotic Distributions Of Cointegration Tests," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 573-593, December.
    25. Doornik, Jurgen A, 1999. "Erratum [Approximations to the Asymptotic Distribution of Cointegration Tests]," Journal of Economic Surveys, Wiley Blackwell, vol. 13(2), April.
    26. Robert McNown & Andrei Rogers, 1989. "Forecasting Mortality: A Parameterized Time Series Approach," Demography, Springer;Population Association of America (PAA), vol. 26(4), pages 645-660, November.
    27. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    2. Li, Hong & Tan, Ken Seng & Tuljapurkar, Shripad & Zhu, Wenjun, 2021. "Gompertz law revisited: Forecasting mortality with a multi-factor exponential model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 268-281.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    2. Njenga Carolyn N & Sherris Michael, 2011. "Longevity Risk and the Econometric Analysis of Mortality Trends and Volatility," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 5(2), pages 1-54, July.
    3. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    4. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    5. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    6. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    7. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    8. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    9. Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021. "Getting life expectancy estimates right for pension policy: period versus cohort approach," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.
    10. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    11. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    12. Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
    13. Tomas, Julien & Planchet, Frédéric, 2015. "Prospective mortality tables: Taking heterogeneity into account," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 169-190.
    14. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
    17. Niu, G., 2014. "Essays on subjective expectations and mortality trends," Other publications TiSEM b9f72836-d8ad-478b-adca-4, Tilburg University, School of Economics and Management.
    18. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    19. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    20. Geng Niu & Bertrand Melenberg, 2014. "Trends in Mortality Decrease and Economic Growth," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1755-1773, October.

    More about this item

    Keywords

    mortality forecasting; term structure of mortality; factor modelling; cointegration;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • J10 - Labor and Demographic Economics - - Demographic Economics - - - General
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:7:y:2019:i:1:p:9-:d:212850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.