IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v156y2021ics1366554521002994.html
   My bibliography  Save this article

Joint optimisation of transfer location and capacity for a capacitated multimodal transport network with elastic demand: a bi-level programming model and paradoxes

Author

Listed:
  • Ye, Jiao
  • Jiang, Yu
  • Chen, Jun
  • Liu, Zhiyuan
  • Guo, Renzhong

Abstract

With the growing attention toward developing a multimodal transport system to enhance urban mobility, there is an increasing need to construct new infrastructures, rebuild or expand the existing ones, to accommodate the current and newly generated travel demand. Therefore, this study develops a bi-level model that simultaneously determines the location and capacity of the transfer infrastructure to be built considering the elastic demand in a multimodal transport network. The upper-level problem is formulated as a mixed-integer linear programming problem, whereas the lower-level problem is a combined trip distribution/modal split/assignment model that depicts both the destination and route choices of travellers via a multinomial logit model. Numerical studies are conducted to demonstrate the occurrence of two Braess-like paradox phenomena in a multimodal transport network. The first one states that under fixed demand, constructing new parking spaces to provide the usage of park-and-ride services could deteriorate the system performance measured by the total passengers’ travel time, while the second one reveals that under elastic demand, increasing the parking capacity for park-and-ride services to promote its usage may fail, which would be represented by the decline in their modal share. Meanwhile, a numerical example also suggests that constructing transfer infrastructures at distributed stations outperforms building a large transfer centre in terms of attracting travellers using sustainable transit modes.

Suggested Citation

  • Ye, Jiao & Jiang, Yu & Chen, Jun & Liu, Zhiyuan & Guo, Renzhong, 2021. "Joint optimisation of transfer location and capacity for a capacitated multimodal transport network with elastic demand: a bi-level programming model and paradoxes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:transe:v:156:y:2021:i:c:s1366554521002994
    DOI: 10.1016/j.tre.2021.102540
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521002994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinyuan Chen & Zhiyuan Liu & Graham Currie, 2016. "Optimizing location and capacity of rail-based Park-and-Ride sites to increase public transport usage," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(5), pages 507-526, July.
    2. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    3. Lam, Terence C. & Small, Kenneth A., 0. "The value of time and reliability: measurement from a value pricing experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 231-251, April.
    4. Anna Nagurney & David Boyce, 2005. "Preface to “On a Paradox of Traffic Planning”," Transportation Science, INFORMS, vol. 39(4), pages 443-445, November.
    5. Lam, William H. K. & Zhou, Jing & Sheng, Zhao-han, 2002. "A capacity restraint transit assignment with elastic line frequency," Transportation Research Part B: Methodological, Elsevier, vol. 36(10), pages 919-938, December.
    6. Oppenheim, Norbert, 1993. "Equilibrium trip distribution/assignment with variable destination costs," Transportation Research Part B: Methodological, Elsevier, vol. 27(3), pages 207-217, June.
    7. Dietrich Braess & Anna Nagurney & Tina Wakolbinger, 2005. "On a Paradox of Traffic Planning," Transportation Science, INFORMS, vol. 39(4), pages 446-450, November.
    8. Liu, Tian-Liang & Huang, Hai-Jun & Yang, Hai & Zhang, Xiaoning, 2009. "Continuum modeling of park-and-ride services in a linear monocentric city with deterministic mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 692-707, July.
    9. Xu, Xiangdong & Chen, Anthony & Jansuwan, Sarawut & Yang, Chao & Ryu, Seungkyu, 2018. "Transportation network redundancy: Complementary measures and computational methods," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 68-85.
    10. Zhao, Xinwei & Chen, Peng & Jiao, Junfeng & Chen, Xiaohong & Bischak, Chris, 2019. "How does ‘park and ride’ perform? An evaluation using longitudinal data," Transport Policy, Elsevier, vol. 74(C), pages 15-23.
    11. Bell, Michael G. H., 1995. "Stochastic user equilibrium assignment in networks with queues," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 125-137, April.
    12. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    13. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2012. "Multimodal hub location and hub network design," Omega, Elsevier, vol. 40(6), pages 927-939.
    14. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    15. Lam, W. H. K. & Gao, Z. Y. & Chan, K. S. & Yang, H., 1999. "A stochastic user equilibrium assignment model for congested transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 351-368, June.
    16. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    17. W. Szeto & Y. Jiang & D. Wang & A. Sumalee, 2015. "A Sustainable Road Network Design Problem with Land Use Transportation Interaction over Time," Networks and Spatial Economics, Springer, vol. 15(3), pages 791-822, September.
    18. Fisk, Caroline, 1979. "More paradoxes in the equilibrium assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 305-309, December.
    19. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    20. Zhong, Shaopeng & Cheng, Rong & Jiang, Yu & Wang, Zhong & Larsen, Allan & Nielsen, Otto Anker, 2020. "Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    21. Liu, Zhiyuan & Chen, Xinyuan & Meng, Qiang & Kim, Inhi, 2018. "Remote park-and-ride network equilibrium model and its applications," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 37-62.
    22. Ho, H.W. & Wong, S.C. & Loo, Becky P.Y., 2006. "Combined distribution and assignment model for a continuum traffic equilibrium problem with multiple user classes," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 633-650, September.
    23. Zhao, Chunxue & Fu, Baibai & Wang, Tianming, 2014. "Braess paradox and robustness of traffic networks under stochastic user equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 135-141.
    24. Yao, Jia & Huang, Wenhua & Chen, Anthony & Cheng, Zhanhong & An, Shi & Xu, Guangming, 2019. "Paradox links can improve system efficiency: An illustration in traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 35-49.
    25. Bekhor, Shlomo & Toledo, Tomer, 2005. "Investigating path-based solution algorithms to the stochastic user equilibrium problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(3), pages 279-295, March.
    26. Small, Kenneth A., 2001. "The Value of Pricing," University of California Transportation Center, Working Papers qt0rm449sx, University of California Transportation Center.
    27. Carosi, Samuela & Frangioni, Antonio & Galli, Laura & Girardi, Leopoldo & Vallese, Giuliano, 2019. "A matheuristic for integrated timetabling and vehicle scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 99-124.
    28. Parkhurst, Graham, 1995. "Park and ride: Could it lead to an increase in car traffic?," Transport Policy, Elsevier, vol. 2(1), pages 15-23, January.
    29. Zheng, Yu & Zhang, Xiaoning & Liang, Zhe, 2020. "Multimodal subsidy design for network capacity flexibility optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 16-35.
    30. Wang, Guangchao & Chen, Anthony & Kitthamkesorn, Songyot & Ryu, Seungkyu & Qi, Hang & Song, Ziqi & Song, Jianguo, 2020. "A multi-modal network equilibrium model with captive mode choice and path size logit route choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 293-317.
    31. Chiou, Suh-Wen, 2005. "Bilevel programming for the continuous transport network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 361-383, May.
    32. Yang, Hai & Bell, Michael G. H. & Meng, Qiang, 2000. "Modeling the capacity and level of service of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(4), pages 255-275, May.
    33. Liu, Zhiyuan & Wang, Zewen & Cheng, Qixiu & Yin, Ruyang & Wang, Meng, 2021. "Estimation of urban network capacity with second-best constraints for multimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 276-294.
    34. Chen, Xinyuan & Zhang, Wei & Guo, Xiaomeng & Liu, Zhiyuan & Wang, Shuaian, 2021. "An improved learning-and-optimization train fare design method for addressing commuting congestion at CBD stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    35. Parkhurst, G., 2000. "Influence of bus-based park and ride facilities on users' car traffic," Transport Policy, Elsevier, vol. 7(2), pages 159-172, April.
    36. Yang, Hai, 1995. "Heuristic algorithms for the bilevel origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 231-242, August.
    37. Ku, Donggyun & Na, Sungyong & Kim, Jooyoung & Lee, Seungjae, 2020. "Interpretations of Downs–Thomson paradox with median bus lane operations," Research in Transportation Economics, Elsevier, vol. 83(C).
    38. Roger L. Tobin & Terry L. Friesz, 1988. "Sensitivity Analysis for Equilibrium Network Flow," Transportation Science, INFORMS, vol. 22(4), pages 242-250, November.
    39. Wang, Judith Y. T. & Yang, Hai & Lindsey, Robin, 2004. "Locating and pricing park-and-ride facilities in a linear monocentric city with deterministic mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 709-731, September.
    40. Jiang, Y. & Szeto, W.Y., 2016. "Reliability-based stochastic transit assignment: Formulations and capacity paradox," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 181-206.
    41. Zhiyuan Liu & Qiang Meng, 2014. "Bus-based park-and-ride system: a stochastic model on multimodal network with congestion pricing schemes," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(5), pages 994-1006, May.
    42. Noland, Robert B. & Smart, Michael J. & Guo, Ziye, 2016. "Bikeshare trip generation in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 164-181.
    43. Bagloee, Saeed Asadi & (Avi) Ceder, Avishai & Sarvi, Majid & Asadi, Mohsen, 2019. "Is it time to go for no-car zone policies? Braess Paradox Detection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 251-264.
    44. Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.
    45. Jianzhong Zhang & Nae-Heon Kim & L. Lasdon, 1985. "An Improved Successive Linear Programming Algorithm," Management Science, INFORMS, vol. 31(10), pages 1312-1331, October.
    46. Mustafa Abdulaal & Larry J. LeBlanc, 1979. "Methods for Combining Modal Split and Equilibrium Assignment Models," Transportation Science, INFORMS, vol. 13(4), pages 292-314, November.
    47. Tang, Yili & Jiang, Yu & Yang, Hai & Nielsen, Otto Anker, 2020. "Modeling and optimizing a fare incentive strategy to manage queuing and crowding in mass transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 247-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    2. Zhou, Yueer & Li, Linbo & Zhang, Yahua, 2023. "Location of transit-oriented development stations based on multimodal network equilibrium: Bi-level programming and paradoxes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    3. Danica Babić & Milica Kalić & Milan Janić & Slavica Dožić & Katarina Kukić, 2022. "Integrated Door-to-Door Transport Services for Air Passengers: From Intermodality to Multimodality," Sustainability, MDPI, vol. 14(11), pages 1-20, May.
    4. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    5. Fan, Yinchao & Ding, Jianxun & Liu, Haoxiang & Wang, Yu & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part I: The combined mode split and traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    6. Zhang, Junxia & Li, Xingmei & Jia, Dongqing & Zhou, Yuexin, 2023. "A Bi-level programming for union battery swapping stations location-routing problem under joint distribution and cost allocation," Energy, Elsevier, vol. 272(C).
    7. Jiang, Lijun & Wang, Xifu & Yang, Kai & Gao, Yiwen, 2023. "Bilevel optimization for the reorganization of inland river ports: A niche perspective," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Sun, S. & Szeto, W.Y., 2019. "Optimal sectional fare and frequency settings for transit networks with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 147-177.
    3. Liu, Zhiyuan & Wang, Zewen & Cheng, Qixiu & Yin, Ruyang & Wang, Meng, 2021. "Estimation of urban network capacity with second-best constraints for multimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 276-294.
    4. Xinyuan Chen & Ruyang Yin & Qinhe An & Yuan Zhang, 2021. "Modeling a Distance-Based Preferential Fare Scheme for Park-and-Ride Services in a Multimodal Transport Network," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    5. Gao, Ge & Sun, Huijun & Wu, Jianjun & Liu, Xinmin & Chen, Weiya, 2018. "Park-and-ride service design under a price-based tradable credits scheme in a linear monocentric city," Transport Policy, Elsevier, vol. 68(C), pages 1-12.
    6. Meng, Qiang & Liu, Zhiyuan & Wang, Shuaian, 2012. "Optimal distance tolls under congestion pricing and continuously distributed value of time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 937-957.
    7. Du, Bo & Wang, David Z.W., 2014. "Continuum modeling of park-and-ride services considering travel time reliability and heterogeneous commuters – A linear complementarity system approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 58-81.
    8. Judith Y. T. Wang & Richard D. Connors, 2018. "Urban Growth, Transport Planning, Air Quality and Health: A Multi-Objective Spatial Analysis Framework for a Linear Monocentric City," Networks and Spatial Economics, Springer, vol. 18(4), pages 839-874, December.
    9. Liu, Zhiyuan & Chen, Xinyuan & Meng, Qiang & Kim, Inhi, 2018. "Remote park-and-ride network equilibrium model and its applications," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 37-62.
    10. Wang, Jian & He, Xiaozheng & Peeta, Srinivas & Wang, Wei, 2022. "Globally convergent line search algorithm with Euler-based step size-determination method for continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 119-144.
    11. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    12. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    13. Yao, Jia & Huang, Wenhua & Chen, Anthony & Cheng, Zhanhong & An, Shi & Xu, Guangming, 2019. "Paradox links can improve system efficiency: An illustration in traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 35-49.
    14. Zhu, Zheng & Mardan, Atabak & Zhu, Shanjiang & Yang, Hai, 2021. "Capturing the interaction between travel time reliability and route choice behavior based on the generalized Bayesian traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 48-64.
    15. Yao, Jia & Chen, Anthony & Ryu, Seungkyu & Shi, Feng, 2014. "A general unconstrained optimization formulation for the combined distribution and assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 137-160.
    16. Wang, Aihu & Tang, Yuanhua & Mohmand, Yasir Tariq & Xu, Pei, 2022. "Modifying link capacity to avoid Braess Paradox considering elastic demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    17. Du, Muqing & Chen, Anthony, 2022. "Sensitivity analysis for transit equilibrium assignment and applications to uncertainty analysis," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 175-202.
    18. Jairo Ortega & János Tóth & Tamás Péter, 2021. "A Comprehensive Model to Study the Dynamic Accessibility of the Park & Ride System," Sustainability, MDPI, vol. 13(7), pages 1-17, April.
    19. Xinyuan Chen & Yiran Wang & Yuan Zhang, 2021. "A Trial-and-Error Toll Design Method for Traffic Congestion Mitigation on Large River-Crossing Channels in a Megacity," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    20. Bagloee, Saeed Asadi & (Avi) Ceder, Avishai & Sarvi, Majid & Asadi, Mohsen, 2019. "Is it time to go for no-car zone policies? Braess Paradox Detection," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 251-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:156:y:2021:i:c:s1366554521002994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.