IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v168y2022ics1366554522003143.html
   My bibliography  Save this article

Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes

Author

Listed:
  • Du, Muqing
  • Zhou, Jiankun
  • Chen, Anthony
  • Tan, Heqing

Abstract

Given the increasing prevalence of new urban transport modes such as ridesharing, e-hailing, and combined transport, it is essential to evaluate their effects on the capacity of transportation networks. Hence, this paper develops a novel transportation network capacity model to capture the travel behaviors of inter-multimodal mobility in an urban transportation system that incorporates emerging travel modes. The novel model is formulated as a bi-level programming problem, in which the lower-level model is a combined modal split and traffic assignment (CMSTA) problem based on mathematical programming. The CMSTA problem adopts the cross-nested logit model to account for intermodal travel behavior in the modal split phase and the path-sized logit model to account for route overlap in the traffic assignment phase. Moreover, the logit-based trip distribution model is used to capture the dispatch of the e-hailing traffic flow and the matching of ridesharing drivers with passengers. Besides, we consider flow interactions (e.g., cars and buses sharing the same link) in the road network. We customize a solution framework for solving this novel model that adopts the recently developed fast path-based algorithm with the Barzilai–Borwein stepsize strategy to efficiently solve the CMSTA problem, and derive a sensitivity analysis-based (SAB) algorithm to solve the entire bi-level programming problem. The effectiveness of the novel model is verified in numerical experiments that demonstrate the effects of intermodal transportation, e-hailing, and ridesharing on the capacity of a multimodal transportation network.

Suggested Citation

  • Du, Muqing & Zhou, Jiankun & Chen, Anthony & Tan, Heqing, 2022. "Modeling the capacity of multimodal and intermodal urban transportation networks that incorporate emerging travel modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:transe:v:168:y:2022:i:c:s1366554522003143
    DOI: 10.1016/j.tre.2022.102937
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522003143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kitthamkesorn, Songyot & Chen, Anthony, 2013. "A path-size weibit stochastic user equilibrium model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 378-397.
    2. Du, Muqing & Tan, Heqing & Chen, Anthony, 2021. "A faster path-based algorithm with Barzilai-Borwein step size for solving stochastic traffic equilibrium models," European Journal of Operational Research, Elsevier, vol. 290(3), pages 982-999.
    3. Muqing Du & Xiaowei Jiang & Lin Cheng, 2015. "Estimating the Capacity of Urban Transportation Networks with an Improved Sensitivity Based Method," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-13, March.
    4. Li, Yuanyuan & Liu, Yang & Xie, Jun, 2020. "A path-based equilibrium model for ridesharing matching," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 373-405.
    5. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    6. Wong, S. C. & Yang, Hai, 1997. "Reserve capacity of a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 397-402, October.
    7. Azevedo, JoseAugusto & Santos Costa, Maria Emilia O. & Silvestre Madeira, Joaquim Joao E. R. & Vieira Martins, Ernesto Q., 1993. "An algorithm for the ranking of shortest paths," European Journal of Operational Research, Elsevier, vol. 69(1), pages 97-106, August.
    8. Li, Yuanyuan & Liu, Yang, 2021. "Optimizing flexible one-to-two matching in ride-hailing systems with boundedly rational users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    9. Xu, Xiangdong & Chen, Anthony & Jansuwan, Sarawut & Yang, Chao & Ryu, Seungkyu, 2018. "Transportation network redundancy: Complementary measures and computational methods," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 68-85.
    10. Ye, Jiao & Jiang, Yu & Chen, Jun & Liu, Zhiyuan & Guo, Renzhong, 2021. "Joint optimisation of transfer location and capacity for a capacitated multimodal transport network with elastic demand: a bi-level programming model and paradoxes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    11. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    12. Morlok, Edward K. & Chang, David J., 2004. "Measuring capacity flexibility of a transportation system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(6), pages 405-420, July.
    13. Chen, Anthony & Kasikitwiwat, Panatda, 2011. "Modeling capacity flexibility of transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 105-117, February.
    14. Yang, Hai & Bell, Michael G. H., 1998. "A capacity paradox in network design and how to avoid it," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 539-545, September.
    15. Di, Xuan & Ban, Xuegang Jeff, 2019. "A unified equilibrium framework of new shared mobility systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 50-78.
    16. Wong, K. I. & Wong, S. C. & Yang, Hai, 2001. "Modeling urban taxi services in congested road networks with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 35(9), pages 819-842, November.
    17. Zheng, Yu & Zhang, Xiaoning & Liang, Zhe, 2020. "Multimodal subsidy design for network capacity flexibility optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 16-35.
    18. Xu, Huayu & Pang, Jong-Shi & Ordóñez, Fernando & Dessouky, Maged, 2015. "Complementarity models for traffic equilibrium with ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 161-182.
    19. Kitthamkesorn, Songyot & Chen, Anthony, 2017. "Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 291-310.
    20. Agachai Sumalee & Fumitaka Kurauchi, 2006. "Network Capacity Reliability Analysis Considering Traffic Regulation after a Major Disaster," Networks and Spatial Economics, Springer, vol. 6(3), pages 205-219, September.
    21. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    22. Yang, Hai & Bell, Michael G. H. & Meng, Qiang, 2000. "Modeling the capacity and level of service of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(4), pages 255-275, May.
    23. Liu, Zhiyuan & Wang, Zewen & Cheng, Qixiu & Yin, Ruyang & Wang, Meng, 2021. "Estimation of urban network capacity with second-best constraints for multimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 276-294.
    24. Tam, M. L. & Lam, William H. K., 2000. "Maximum car ownership under constraints of road capacity and parking space," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 145-170, April.
    25. Wang, Xiaolei & Wang, Jun & Guo, Lei & Liu, Wei & Zhang, Xiaoning, 2021. "A convex programming approach for ridesharing user equilibrium under fixed driver/rider demand," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 33-51.
    26. Ma, Jie & Xu, Min & Meng, Qiang & Cheng, Lin, 2020. "Ridesharing user equilibrium problem under OD-based surge pricing strategy," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 1-24.
    27. Marzano, Vittorio & Papola, Andrea, 2008. "On the covariance structure of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 83-98, February.
    28. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    29. Jian Wang & Muqing Du & Lili Lu & Xiaozheng He, 2018. "Maximizing Network Throughput under Stochastic User Equilibrium with Elastic Demand," Networks and Spatial Economics, Springer, vol. 18(1), pages 115-143, March.
    30. Chen-Yang Yan & Mao-Bin Hu & Rui Jiang & Jiancheng Long & Jin-Yong Chen & Hao-Xiang Liu, 2019. "Stochastic Ridesharing User Equilibrium in Transport Networks," Networks and Spatial Economics, Springer, vol. 19(4), pages 1007-1030, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhenjie & Zhang, Dezhi & Tavasszy, Lóránt & Fazi, Stefano, 2023. "Integrated multimodal freight service network design and pricing with a competing service integrator and heterogeneous shipper classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    2. Zhaoqi Zang & Xiangdong Xu & Anthony Chen & Chao Yang, 2022. "Modeling the α-max capacity of transportation networks: a single-level mathematical programming formulation," Transportation, Springer, vol. 49(4), pages 1211-1243, August.
    3. Zheng, Yu & Zhang, Xiaoning & Liang, Zhe, 2020. "Multimodal subsidy design for network capacity flexibility optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 16-35.
    4. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    5. Jian Wang & Muqing Du & Lili Lu & Xiaozheng He, 2018. "Maximizing Network Throughput under Stochastic User Equilibrium with Elastic Demand," Networks and Spatial Economics, Springer, vol. 18(1), pages 115-143, March.
    6. Liu, Zhiyuan & Wang, Zewen & Cheng, Qixiu & Yin, Ruyang & Wang, Meng, 2021. "Estimation of urban network capacity with second-best constraints for multimodal transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 276-294.
    7. Yao, Jia & Chen, Anthony & Ryu, Seungkyu & Shi, Feng, 2014. "A general unconstrained optimization formulation for the combined distribution and assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 137-160.
    8. Rui Yao & Shlomo Bekhor, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Papers 2303.16595, arXiv.org, revised Dec 2023.
    9. Yao, Rui & Bekhor, Shlomo, 2023. "A general equilibrium model for multi-passenger ridesharing systems with stable matching," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    10. Jansuwan, Sarawut & Chen, Anthony & Xu, Xiangdong, 2021. "Analysis of freight transportation network redundancy: An application to Utah’s bi-modal network for transporting coal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 154-171.
    11. Xu, Xiangdong & Chen, Anthony & Jansuwan, Sarawut & Yang, Chao & Ryu, Seungkyu, 2018. "Transportation network redundancy: Complementary measures and computational methods," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 68-85.
    12. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    13. Seungkyu Ryu & Anthony Chen & Xiangdong Xu & Keechoo Choi, 2014. "A Dual Approach for Solving the Combined Distribution and Assignment Problem with Link Capacity Constraints," Networks and Spatial Economics, Springer, vol. 14(2), pages 245-270, June.
    14. Li, Tongfei & Xu, Min & Sun, Huijun & Xiong, Jie & Dou, Xueping, 2023. "Stochastic ridesharing equilibrium problem with compensation optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    15. Chen, Anthony & Kasikitwiwat, Panatda, 2011. "Modeling capacity flexibility of transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 105-117, February.
    16. Noruzoliaee, Mohamadhossein & Zou, Bo, 2022. "One-to-many matching and section-based formulation of autonomous ridesharing equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 72-100.
    17. Sugiura, Satoshi & Chen, Anthony, 2021. "Vulnerability analysis of cut-capacity structure and OD demand using Gomory-Hu tree method," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 111-127.
    18. Josefsson, Magnus & Patriksson, Michael, 2007. "Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 4-31, January.
    19. Ye, Jiao & Jiang, Yu & Chen, Jun & Liu, Zhiyuan & Guo, Renzhong, 2021. "Joint optimisation of transfer location and capacity for a capacitated multimodal transport network with elastic demand: a bi-level programming model and paradoxes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    20. Xingyuan Li & Jing Bai, 2021. "A Ridesharing Choice Behavioral Equilibrium Model with Users of Heterogeneous Values of Time," IJERPH, MDPI, vol. 18(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:168:y:2022:i:c:s1366554522003143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.